We report the rapid, one-pot synthesis of functional polycarbonates derived from renewable alcohols (i.e., glucose tetraacetate, acetyl isosorbide, lauryl alcohol, and ethanol) and a cyclic carbonate bearing an imidazolecarboxylate. This tandem functionalization/ring-opening polymerization strategy can be performed on multigram scale and eliminates the need for rigorous purification and specialized equipment. A wide range of glass transition temperatures (T-g) was accessible from these renewable pendant groups (>75 degrees C T-g window). We also synthesized several statistical copolycarbonates to show the thermal properties can be tailored with this tandem method. Additionally, we demonstrate a circular polymer economy via chemical recycling to a cyclic carbonate precursor. This work may facilitate development of sustainable polycarbonates with tailored properties that work toward eliminating plastic waste streams.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 53 条
[1]
[Anonymous], 2016, The new plastics economy - rethinking the future of plastics