Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers

被引:317
作者
Bugeaud, Yann [1 ]
Mignotte, Maurice
Siksek, Samir
机构
[1] Univ Strasbourg, Strasbourg, France
[2] Univ Warwick, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.4007/annals.2006.163.969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the first in a series of papers whereby we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat's Last Theorem. In this paper we give new improved bounds for linear forms in three logarithms. We also apply a combination of classical techniques with the modular approach to show that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 and the only perfect powers in the Lucas sequence are 1 and 4.
引用
收藏
页码:969 / 1018
页数:50
相关论文
共 53 条
  • [1] BAKER A, 1993, J REINE ANGEW MATH, V442, P19
  • [2] Batut C., USERS GUIDE PARI GP
  • [3] Bennett C. D., 1997, J. Theor. Nombres Bordeaux, V9, P97
  • [4] Ternary diophantine equations via galois representations and modular forms
    Bennett, MA
    Skinner, CM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01): : 23 - 54
  • [5] Bennett Vicki J., 2001, BMC Chemical Biology, V1, P1, DOI 10.1186/1472-6769-1-1
  • [6] Bilu Y, 2001, J REINE ANGEW MATH, V539, P75
  • [7] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [8] On the modularity of elliptic curves over Q: Wild 3-adic exercises
    Breuil, C
    Conrad, B
    Diamond, F
    Taylor, R
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) : 843 - 939
  • [9] Classical and modular approaches to exponential Diophantine equations - II. The Lebesgue-Nagell equation
    Bugeaud, Y
    Mignotte, M
    Siksek, S
    [J]. COMPOSITIO MATHEMATICA, 2006, 142 (01) : 31 - 62
  • [10] Bugeaud Y, 1996, ACTA ARITH, V74, P67