Improving fermented quality of cider vinegar via rational nutrient feeding strategy

被引:20
作者
Qi, Zhengliang [1 ]
Dong, Die [2 ]
Yang, Hailin [3 ]
Xia, Xiaole [3 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Biotechnol, MOE Key Lab Ind Fermentat Microbiol, Tianjin 300457, Peoples R China
[2] Qilu Univ Technol, Sch Food Sci & Engn, Jinan 250353, Shandong, Peoples R China
[3] Jiangnan Univ, Minist Educ, Coll Biotechnol, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
A. pasteurianus CICIM B7003; Cider vinegar; Fermented quality; Nutritional requirement; Nutrient feeding strategy; ACETIC-ACID BACTERIA; ACETOBACTER; RESISTANCE;
D O I
10.1016/j.foodchem.2016.12.078
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This work aimed to find a rational nutrient feeding strategy for cider vinegar fermentation based on adequate information on the nutritional requirement of acetic acid bacteria. Through single nutrient lack experiment assay, necessary nutrient recipe for Acetobacter pasteurianus CICIM B7003 in acetous fermentation was confirmed. Compounds from the essential nutrient recipe were tested further to find out the key substrates significantly influencing cider vinegar fermentation. The findings showed that aspartate, glutamate, proline and tryptophan should be considered in detail for optimizing nutritional composition of cider. Finally, a nutrient feeding strategy that simultaneously adds proline, glutamate, aspartate and tryptophan to form final concentrations of 0.02 g/L, 0.03 a, 0.01 g/L and 0.005 g/L in cider was achieved by orthogonal experiment design. Comparing to the original fermentation, the yield of acetic acid from alcohol reached 93.3% and the concentration of most volatile flavor compounds increased with the rational nutrient feeding strategy. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:312 / 319
页数:8
相关论文
共 24 条
[1]   Roles of glycine betaine and proline in improving plant abiotic stress resistance [J].
Ashraf, M. ;
Foolad, M. R. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2007, 59 (02) :206-216
[2]   Influence of the final ethanol concentration on the acetification and production rate in the wine vinegar process [J].
Baena-Ruano, Silvia ;
Jimenez-Ot, Carlos ;
Santos-Duenas, Ines M. ;
Jimenez-Hornero, Jorge E. ;
Bonilla-Venceslada, Jose L. ;
Alvarez-Caliz, Carmen ;
Garcia-Garcia, Isidoro .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2010, 85 (07) :908-912
[3]   Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108 [J].
Chinnawirotpisan, P ;
Theeragool, G ;
Limtong, S ;
Toyama, H ;
Adachi, O ;
Matsushita, K .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2003, 96 (06) :564-571
[4]  
DRYSDALE GS, 1988, AM J ENOL VITICULT, V39, P143
[5]   Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method [J].
Fernandez-Perez, Rocio ;
Torres, Carmen ;
Sanz, Susana ;
Ruiz-Larrea, Fernanda .
FOOD MICROBIOLOGY, 2010, 27 (08) :973-978
[6]   THE NITROGEN REQUIREMENTS OF GLUCONOBACTER, ACETOBACTER AND FRATEURIA [J].
GOSSELE, F ;
VANDENMOOTER, M ;
VERDONCK, L ;
SWINGS, J ;
DELEY, J .
ANTONIE VAN LEEUWENHOEK JOURNAL OF MICROBIOLOGY, 1981, 47 (04) :289-296
[7]   Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode [J].
Gullo, Maria ;
Zanichelli, Gabriele ;
Verzelloni, Elena ;
Lemmetti, Federico ;
Giudici, Paolo .
PROCESS BIOCHEMISTRY, 2016, 51 (09) :1129-1139
[8]  
HATCH MD, 1978, ANAL BIOCHEM, V85, P271, DOI 10.1016/0003-2697(78)90299-3
[9]  
Joshi V. K., 2009, P197, DOI 10.1007/978-88-470-0866-3_12
[10]   New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model [J].
Lee, Ju-Hye ;
Cho, Hyun-Dong ;
Jeong, Ji-Hye ;
Lee, Mi-Kyung ;
Jeong, Yong-Ki ;
Shim, Ki-Hwan ;
Seo, Kwon-Il .
FOOD CHEMISTRY, 2013, 141 (03) :3241-3249