A New High Power LiNi0.81Co0.1Al0.09O2 Cathode Material for Lithium-Ion Batteries

被引:166
作者
Jo, Minki [1 ]
Noh, Mijung [1 ]
Oh, Pilgun [1 ]
Kim, Youngsik [1 ]
Cho, Jaephil [1 ]
机构
[1] UNIST, Sch Energy & Chem Engn, Ulsan 689798, South Korea
关键词
LiNi0.81Co0.1Al0.09O2; cathode materials; Li-ion batteries; rate capability; thermal stability; STRUCTURAL CHARACTERIZATION; THERMAL-STABILITY; SOLID-SOLUTIONS; CELLS; LINIO2; AL; PERFORMANCE; BEHAVIOR; LICOO2; NI;
D O I
10.1002/aenm.201301583
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Among the various Ni-based layered oxide systems in the form of LiNi1-y-zCoyAlzO2 (NCA), the compostions between y = 0.1-0.15, z = 0.05 are the most successful and commercialized cathodes used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, tremendous research effort has been dedicted to searching for better composition in NCA systems to overcome the limitations of these cathodes, particularly those that arise when they are used use at high discharge/charge rates (>5C) and in high temperature (60 degrees C) environments. In addition, improving the thermal stability at 4.5 V is also very important in terms of the total amount of heat generated and the onset temperature. Here, a new NCA composition in the form of LiNi0.81Co0.1Al0.09O2 (y = 0.1, z = 0.09) is reported for the first time. Compared to the LiNi0.85Co0.1Al0.05O2 cathode, LiNi0.81Co0.1Al0.09O2 exhibits an excellent rate capability of 155 mAh g(-1) at 10 C with a cut-off voltage range between 3 and 4.5 V, corresponding to 562 Wh kg(-1) at 24 degrees C. It additionally provides significantly improved thermal stability and electrochemical performance at the high temperature of 60 degrees C, with a discharge capacity of 122 mAh g(-1) after 200 cycles with capacity retention of 59%.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells
    Abraham, DP
    Twesten, RD
    Balasubramanian, M
    Kropf, J
    Fischer, D
    McBreen, J
    Petrov, I
    Amine, K
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) : A1450 - A1456
  • [2] Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
    Abraham, DP
    Twesten, RD
    Balasubramanian, M
    Petrov, I
    McBreen, J
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) : 620 - 625
  • [3] Thermal behavior of Li1-yNiO2 and the decomposition mechanism
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1998, 109 (3-4) : 295 - 302
  • [4] CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD
    ARAI, H
    OKADA, S
    OHTSUKA, H
    ICHIMURA, M
    YAMAKI, J
    [J]. SOLID STATE IONICS, 1995, 80 (3-4) : 261 - 269
  • [5] The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn)
    Aurbach, D
    Gamolsky, K
    Markovsky, B
    Salitra, G
    Gofer, Y
    Heider, U
    Oesten, R
    Schmidt, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1322 - 1331
  • [6] Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2
    Belharouak, I
    Lu, WQ
    Vissers, D
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) : 329 - 335
  • [7] Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders
    Belharouak, Ilias
    Lu, Wenquan
    Liu, Jun
    Vissers, Donald
    Amine, Khalil
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 905 - 909
  • [8] LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS
    BROUSSELY, M
    PERTON, F
    LABAT, J
    STANIEWICZ, RJ
    ROMERO, A
    [J]. JOURNAL OF POWER SOURCES, 1993, 43 (1-3) : 209 - 216
  • [9] Main aging mechanisms in Li ion batteries
    Broussely, M
    Biensan, P
    Bonhomme, F
    Blanchard, P
    Herreyre, S
    Nechev, K
    Staniewicz, RJ
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 90 - 96
  • [10] Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries
    Cao, H
    Xia, BJ
    Xu, NX
    Zhang, CF
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 376 (1-2) : 282 - 286