Some Hyperbolic Conservation Laws on Rn

被引:0
作者
Bedida, Nabila [1 ]
Hermas, Nadji [2 ]
机构
[1] Univ Freres Mentouri, Dept Math, Fac Sci Exactes, Constantine, Algeria
[2] Univ Ziane Achour, Dept Math & Informat, Djelfa, Algeria
关键词
Maximum solutions; Quasi-linear hyperbolic systems; Hyperbolic laws of conservation; 35L40; 35L45; 35L50; 35L60; 35L65; 58J45; SYSTEMS;
D O I
10.1007/s00009-020-01638-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and the uniqueness of maximum classical solutions in the temporal variable for some quasi-linear hyperbolic systems.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Boundary control of hyperbolic conservation laws using a frequency domain approach [J].
Litrico, Xavier ;
Fromion, Vincent .
AUTOMATICA, 2009, 45 (03) :647-656
[42]   A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws [J].
Zhu, Jun ;
Qiu, Jianxian .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) :1338-1359
[43]   ADAPTIVE MESH RECONSTRUCTION FOR HYPERBOLIC CONSERVATION LAWS WITH TOTAL VARIATION BOUND [J].
Sfakianakis, Nikolaos .
MATHEMATICS OF COMPUTATION, 2013, 82 (281) :129-151
[44]   A third-order entropy stable scheme for hyperbolic conservation laws [J].
Cheng, Xiaohan ;
Nie, Yufeng .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2016, 13 (01) :129-145
[45]   A weighted ENO-flux limiter scheme for hyperbolic conservation laws [J].
Peer, A. A. I. ;
Dauhoo, M. Z. ;
Gopaul, A. ;
Bhuruth, M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (15) :3467-3488
[46]   L2-type Lyapunov functions for hyperbolic scalar conservation laws [J].
Serre, Denis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (02) :401-416
[47]   A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws [J].
Cardoen, Clement ;
Marx, Swann ;
Nouy, Anthony ;
Seguin, Nicolas .
NUMERISCHE MATHEMATIK, 2024, 156 (04) :1289-1324
[48]   PERFECT DERIVATIVES, CONSERVATIVE DIFFERENCES AND ENTROPY STABLE COMPUTATION OF HYPERBOLIC CONSERVATION LAWS [J].
Tadmor, Eitan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (08) :4579-4598
[49]   Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws [J].
Buerger, Raimund ;
Kenettinkara, Sudarshan Kumar ;
Zorio, David .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) :1288-1310
[50]   GLOBAL EXISTENCE TO THE CAUCHY PROBLEM FOR HYPERBOLIC CONSERVATION LAWS WITH AN ISOLATED UMBILIC POINT [J].
Felaco, Elisabetta ;
Rubino, Bruno ;
Sampalmieri, Rosella .
QUARTERLY OF APPLIED MATHEMATICS, 2013, 71 (04) :629-659