Some Hyperbolic Conservation Laws on Rn

被引:0
作者
Bedida, Nabila [1 ]
Hermas, Nadji [2 ]
机构
[1] Univ Freres Mentouri, Dept Math, Fac Sci Exactes, Constantine, Algeria
[2] Univ Ziane Achour, Dept Math & Informat, Djelfa, Algeria
关键词
Maximum solutions; Quasi-linear hyperbolic systems; Hyperbolic laws of conservation; 35L40; 35L45; 35L50; 35L60; 35L65; 58J45; SYSTEMS;
D O I
10.1007/s00009-020-01638-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and the uniqueness of maximum classical solutions in the temporal variable for some quasi-linear hyperbolic systems.
引用
收藏
页数:13
相关论文
共 50 条
[31]   A local pseudo arc-length method for hyperbolic conservation laws [J].
Wang, Xing ;
Ma, Tian-Bao ;
Ren, Hui-Lan ;
Ning, Jian-Guo .
ACTA MECHANICA SINICA, 2014, 30 (06) :956-965
[32]   ENTROPY CONSERVATIVE SCHEMES AND ADAPTIVE MESH SELECTION FOR HYPERBOLIC CONSERVATION LAWS [J].
Arvanitis, Christos ;
Makridakis, Charalambos ;
Sfakianakis, Nikolaos I. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (03) :383-404
[33]   AN IMPROVED ALTERNATIVE WENO SCHEMES WITH PERTURBATIONAL TERMS FOR THE HYPERBOLIC CONSERVATION LAWS [J].
Sung, Kunmin ;
Ha, Youngsoo ;
Kang, Myungjoo .
JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 27 (04) :207-231
[34]   An improved flux limiter using fuzzy modifiers for Hyperbolic Conservation Laws [J].
Lochab, Ruchika ;
Kumar, Vivek .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 181 :16-37
[35]   A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws [J].
Coron, JM ;
d'Andrea-Novel, B ;
Bastin, G .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :3319-3323
[36]   On the reservoir technique convergence for nonlinear hyperbolic conservation laws - Part I [J].
Labbe, Stephane ;
Lorin, Emmanuel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :477-497
[37]   Fully discrete WENO with double entropy condition for hyperbolic conservation laws [J].
Dong, Haitao ;
Zhou, Tong ;
Liu, Fujun .
ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2023, 17 (01)
[38]   A class of ENO schemes with adaptive order for solving hyperbolic conservation laws [J].
Shen, Hua .
COMPUTERS & FLUIDS, 2023, 266
[39]   An Oscillation-Free Spectral Volume Method for Hyperbolic Conservation Laws [J].
Zhang, Xinyue ;
Pan, Liang ;
Cao, Waixiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
[40]   Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws [J].
Balsara, Dinshaw S. ;
Bhoriya, Deepak ;
Shu, Chi-Wang ;
Kumar, Harish .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,