Phase Transitions on Random Lattices: How Random is Topological Disorder?

被引:34
|
作者
Barghathi, Hatem [1 ]
Vojta, Thomas [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
CRITICAL-BEHAVIOR; SYSTEMS; MODEL;
D O I
10.1103/PhysRevLett.113.120602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of omega = (d - 1)/(2d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d + 1)nu > 2 rather than the usual Harris criterion d nu > 2, making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1. These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices.
引用
收藏
页数:5
相关论文
共 50 条
  • [2] Topological phase transitions in superradiance lattices
    Wang, Da-Wei
    Cai, Han
    Yuan, Luqi
    Zhu, Shi-Yao
    Liu, Ren-Bao
    OPTICA, 2015, 2 (08): : 712 - 715
  • [3] Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices
    de Oliveira, Marcelo M.
    Alves, Sidiney G.
    Ferreira, Silvio C.
    PHYSICAL REVIEW E, 2016, 93 (01):
  • [4] Topological phase transitions in tilted optical lattices
    Kolovsky, Andrey R.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [5] Universality of continuous phase transitions on random Voronoi graphs
    Schrauth, Manuel
    Portela, Jefferson S. E.
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [6] Evolutionary Phase Transitions in Random Environments
    Skanata, Antun
    Kussell, Edo
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)
  • [7] Quantum phase transitions in random magnets
    Young, AP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 556 - 559
  • [8] Phase transitions of the random-bond Potts chain with long-range interactions
    d'Auriac, Jean-Christian Angles
    Igloi, Ferenc
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [9] Diffusion on random lattices
    Wang, F
    Cohen, EGD
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) : 233 - 261
  • [10] Topological quantum phase transitions on the kagome and square-octagon lattices
    Liu, Xiao-Ping
    Chen, Wen-Chao
    Wang, Yi-Fei
    Gong, Chang-De
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (30)