Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation

被引:8
|
作者
Zhang, Pu [1 ]
Xiao, Wei-lin [2 ]
Zhang, Xi-li [2 ]
Niu, Pan-qiang [3 ,4 ]
机构
[1] Changzhou Univ, Sch Econ & Management, Dept Finance, Changzhou 213164, Peoples R China
[2] Zhejiang Univ, Sch Management, Dept Accounting & Finance, Hangzhou 310058, Zhejiang, Peoples R China
[3] Shanghai Univ, Sch Film & Televis Art & Technol, Shanghai 200444, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Media & Design, Shanghai 200240, Peoples R China
关键词
Fractional Ornstein-Uhlenbeck processes; Quadratic variation; Maximum likelihood estimation; Donsker type approximation; Consistent estimator; MAXIMUM-LIKELIHOOD ESTIMATORS;
D O I
10.1016/j.econmod.2013.09.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
Fractional Ornstein-Uhlenbeck process is an extended model of the traditional Ornstein-Uhlenbeck process that provides some useful models for many physical and financial phenomena demonstrating long-range dependencies. Obviously, if some phenomenon can be modeled by fractional Ornstein-Uhlenbeck processes, the problem of estimating unknown parameters in these models is of great interest, especially, in discrete time. This paper deals with the problem of estimating the unknown parameters in fractional Ornstein-Uhlenbeck processes. The estimation procedure is built upon the marriage of the quadratic variation method and the maximum likelihood approach. The consistency of these estimators is also provided. Simulation outcomes illustrate that our methodology is efficient and reliable. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [21] Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean
    Jiang, Hui
    Li, Shi Min
    Wang, Wei Gang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1308 - 1324
  • [22] Modelling and parameter estimation for discretely observed fractional iterated Ornstein-Uhlenbeck processes
    Kalemkerian, Juan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 29 - 51
  • [23] Comparative Estimation for Discrete Fractional Ornstein-Uhlenbeck Process
    Rifo, Laura
    Torres, Soledad
    Tudor, Ciprian A.
    STOCHASTIC MODELS, 2013, 29 (03) : 291 - 305
  • [24] Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean
    Hui Jiang
    Shi Min Li
    Wei Gang Wang
    Acta Mathematica Sinica, English Series, 2024, 40 : 1308 - 1324
  • [25] Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation
    Janczura, Joanna
    Magdziarz, Marcin
    Metzler, Ralf
    CHAOS, 2023, 33 (10)
  • [26] Asymptotic theory for explosive fractional Ornstein-Uhlenbeck processes
    Jiang, Hui
    Pan, Yajuan
    Xiao, Weilin
    Yang, Qingshan
    Yu, Jun
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3931 - 3974
  • [27] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [28] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    XIAO WeiLin1
    2Department of Accounting and Finance
    Science China(Mathematics), 2012, 55 (07) : 1497 - 1511
  • [29] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    WeiLin Xiao
    WeiGuo Zhang
    XiLi Zhang
    Science China Mathematics, 2012, 55 : 1497 - 1511
  • [30] PROPERTIES OF 2-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    WANG, ZK
    KEXUE TONGBAO, 1984, 29 (10): : 1415 - 1415