Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation

被引:8
|
作者
Zhang, Pu [1 ]
Xiao, Wei-lin [2 ]
Zhang, Xi-li [2 ]
Niu, Pan-qiang [3 ,4 ]
机构
[1] Changzhou Univ, Sch Econ & Management, Dept Finance, Changzhou 213164, Peoples R China
[2] Zhejiang Univ, Sch Management, Dept Accounting & Finance, Hangzhou 310058, Zhejiang, Peoples R China
[3] Shanghai Univ, Sch Film & Televis Art & Technol, Shanghai 200444, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Media & Design, Shanghai 200240, Peoples R China
关键词
Fractional Ornstein-Uhlenbeck processes; Quadratic variation; Maximum likelihood estimation; Donsker type approximation; Consistent estimator; MAXIMUM-LIKELIHOOD ESTIMATORS;
D O I
10.1016/j.econmod.2013.09.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
Fractional Ornstein-Uhlenbeck process is an extended model of the traditional Ornstein-Uhlenbeck process that provides some useful models for many physical and financial phenomena demonstrating long-range dependencies. Obviously, if some phenomenon can be modeled by fractional Ornstein-Uhlenbeck processes, the problem of estimating unknown parameters in these models is of great interest, especially, in discrete time. This paper deals with the problem of estimating the unknown parameters in fractional Ornstein-Uhlenbeck processes. The estimation procedure is built upon the marriage of the quadratic variation method and the maximum likelihood approach. The consistency of these estimators is also provided. Simulation outcomes illustrate that our methodology is efficient and reliable. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [1] Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation
    Xiao, Weilin
    Zhang, Weiguo
    Xu, Weidong
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4196 - 4207
  • [2] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [3] Parameter estimation for the skew Ornstein-Uhlenbeck processes based on discrete observations
    Xing, Xiaoyu
    Zhao, Danfeng
    Li, Bing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2176 - 2188
  • [4] Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter
    Hu, Yaozhong
    Nualart, David
    Zhou, Hongjuan
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 111 - 142
  • [5] Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise
    Chen, Yong
    Hu, Yaozhong
    Wang, Zhi
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 613 - 629
  • [6] On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes
    Lee, Chihoon
    Song, Jian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (05) : 751 - 778
  • [7] On the Exponentials of Fractional Ornstein-Uhlenbeck Processes
    Matsui, Muneya
    Shieh, Narn-Rueih
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 594 - 611
  • [8] Fractional iterated Ornstein-Uhlenbeck Processes
    Kalemkerian, Juan
    Rafael Leon, Jose
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1105 - 1128
  • [9] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [10] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98