Small minimal blocking sets and complete k-arcs in PG(2, p3)

被引:29
作者
Polverino, O [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
blocking set; complete are; Galois plane;
D O I
10.1016/S0012-365X(99)00090-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we improve the upper bound of the size of a small minimal blocking set in PG(2, q) and we show that a small minimal blocking set B in PG(2, p(3)) is either of Ri dei type or every line intersects B in 'few points'. Finally, using this result we prove that a complete k-arc in PG(2,p(3)) has more than root 3p(3) + 1/2 points for every prime p. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:469 / 476
页数:8
相关论文
共 7 条
[1]  
BALL S, UNPUB SMALL COMPLETE
[2]  
BALL S, IN PRESS J COMBIN TH
[3]  
Blokhuis A, 1996, BOLYAI SOC MATH STUD, V2, P133
[4]   ON THE SIZE OF A BLOCKING SET IN PG(2,P) [J].
BLOKHUIS, A .
COMBINATORICA, 1994, 14 (01) :111-114
[5]   BLOCKING SETS IN FINITE PROJECTIVE PLANES [J].
BRUEN, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (03) :380-&
[6]  
Redei L., 1973, Lacunary Polynomials Over Finite Fields
[7]  
Szonyi T., 1997, Finite Fields Appl., V3, P187, DOI [10.1006/ffta.1996.0176, DOI 10.1006/FFTA.1996.0176]