Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

被引:9
作者
Abdel-Rehim, A. M. [1 ]
Stathopoulos, Andreas [2 ]
Orginos, Kostas [3 ,4 ]
机构
[1] Cyprus Inst, Computat Based Sci & Technol Res Ctr CaSToRC, CY-2121 Nicosia, Cyprus
[2] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA
[3] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA
[4] Jefferson Natl Lab, Newport News, VA 23606 USA
基金
美国国家科学基金会;
关键词
BiCG; BiCGStab; deflation; nonsymmetric linear systems; eigenvalues; sparse matrix; Lanczos; multiple right-hand sides; CONJUGATE-GRADIENT ALGORITHM; OPTIMAL PRECONDITIONED METHODS; KRYLOV SUBSPACE METHODS; HERMITIAN EIGENPROBLEMS; LIMITED MEMORY; EIGENVALUES; EQUATIONS; GMRES; DEFLATION; DAVIDSON;
D O I
10.1002/nla.1893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similar to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of eigBiCG to compute spectral approximations with accuracy comparable with that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental eigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides. Copyright (C) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:473 / 493
页数:21
相关论文
共 61 条
[1]   DEFLATED AND RESTARTED SYMMETRIC LANCZOS METHODS FOR EIGENVALUES AND LINEAR EQUATIONS WITH MULTIPLE RIGHT-HAND SIDES [J].
Abdel-Rehim, Abdou M. ;
Morgan, Ronald B. ;
Nicely, Dywayne A. ;
Wilcox, Walter .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) :129-149
[2]  
Ahuja K, 2010, ARXIV10100762V1
[3]  
[Anonymous], 2005, Lattice Gauge Theories: An Introduction
[4]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[5]  
[Anonymous], 1998, Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, DOI DOI 10.1137/1.9780898719628
[6]   Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator [J].
Babich, R. ;
Brannick, J. ;
Brower, R. C. ;
Clark, M. A. ;
Manteuffel, T. A. ;
McCormick, S. F. ;
Osborn, J. C. ;
Rebbi, C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[7]  
BAI ZJ, 1994, MATH COMPUT, V62, P209, DOI 10.1090/S0025-5718-1994-1201066-7
[8]   A technique for accelerating the convergence of restarted GMRES [J].
Baker, AH ;
Jessup, ER ;
Manteuffel, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (04) :962-984
[9]   Effective noise reduction techniques for disconnected loops in Lattice QCD [J].
Bali, Gunnar S. ;
Collins, Sara ;
Schaefer, Andreas .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) :1570-1583
[10]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X