Deep Reinforcement Learning-Based Controller for SOC Management of Multi-Electrical Energy Storage System

被引:51
作者
Sanchez Gorostiza, Francisco [1 ]
Gonzalez-Longatt, Francisco M. [2 ]
机构
[1] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[2] Univ South Eastern Norway, Dept Elect Engn Informat Technol & Cybernet, N-3918 Porsgrunn, Norway
关键词
State of charge; Frequency response; Frequency control; Energy storage; Time-frequency analysis; Power system stability; Electrical energy storage systems; frequency response; state of charge control; reinforcement learning; ENHANCED FREQUENCY-RESPONSE; DOUBLE-LAYER; MODEL; SERVICES;
D O I
10.1109/TSG.2020.2996274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ongoing reduction of the total rotational inertia in modern power systems brings about faster frequency dynamics that must be limited to maintain a secure and economical operation. Electrical energy storage systems (EESSs) have become increasingly attractive to provide fast frequency response services due to their response times. However, proper management of their finite energy reserves is required to ensure timely and secure operation. This paper proposes a deep reinforcement learning (DRL) based controller to manage the state of charge (SOC) of a Multi-EESS (M-EESS), providing frequency response services to the power grid. The proposed DRL agent is trained using an actor-critic method called Deep Deterministic Policy Gradients (DDPG) that allows for continuous action and smoother SOC control of the M-EESS. Deep neural networks (DNNs) are used to represent the actor and critic policies. The proposed strategy comprises granting the agent a constant reward for each time step that the SOC is within a specific band of its target value combined with a substantial penalty if the SOC reaches its minimum or maximum allowable values. The proposed controller is compared to benchmark DRL methods and other control techniques, i.e., Fuzzy Logic and a traditional PID control. Simulation results show the effectiveness of the proposed approach.
引用
收藏
页码:5039 / 5050
页数:12
相关论文
共 50 条
  • [21] A Deep Reinforcement Learning-Based Energy Management Strategy for Fuel Cell Hybrid Buses
    Zheng, Chunhua
    Li, Wei
    Li, Weimin
    Xu, Kun
    Peng, Lei
    Cha, Suk Won
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2022, 9 (03) : 885 - 897
  • [22] Deep reinforcement learning-based energy management of hybrid battery systems in electric vehicles
    Li, Weihan
    Cui, Han
    Nemeth, Thomas
    Jansen, Jonathan
    Uenluebayir, Cem
    Wei, Zhongbao
    Zhang, Lei
    Wang, Zhenpo
    Ruan, Jiageng
    Dai, Haifeng
    Wei, Xuezhe
    Sauer, Dirk Uwe
    JOURNAL OF ENERGY STORAGE, 2021, 36
  • [23] Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types
    Shaqour, Ayas
    Hagishima, Aya
    ENERGIES, 2022, 15 (22)
  • [24] Reinforcement Learning-Based Energy Trading and Management of Regional Interconnected Microgrids
    Liu, Shuai
    Han, Siyuan
    Zhu, Shanying
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (03) : 2047 - 2059
  • [25] Distributional Deep Reinforcement Learning-Based Emergency Frequency Control
    Xie, Jian
    Sun, Wei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (04) : 2720 - 2730
  • [26] Reinforcement learning-based scheduling strategy for energy storage in microgrid
    Zhou, Kunshu
    Zhou, Kaile
    Yang, Shanlin
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [27] A Deep Reinforcement Learning-Based Energy Management Strategy for Fuel Cell Hybrid Buses
    Chunhua Zheng
    Wei Li
    Weimin Li
    Kun Xu
    Lei Peng
    Suk Won Cha
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9 : 885 - 897
  • [28] Deep reinforcement learning-based decision support system for transportation infrastructure management under hurricane events
    Li, Shaopeng
    Wu, Teng
    STRUCTURAL SAFETY, 2022, 99
  • [29] Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning
    Guo, Chenyu
    Wang, Xin
    Zheng, Yihui
    Zhang, Feng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 131
  • [30] Application of Reinforcement Learning-Based Adaptive PID Controller for Automatic Generation Control of Multi-Area Power System
    Muduli, Rasananda
    Jena, Debashisha
    Moger, Tukaram
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 1057 - 1068