A strongly nonlinear elliptic equation having natural growth terms and L1 data

被引:23
作者
Benkirane, A
Elmahi, A
机构
[1] CPR Fes, Fes, Morocco
[2] Fac Sci Dhar Mahraz, Dept Math, Fes, Morocco
关键词
Orlicz-Sobolev spaces; truncations; strongly nonlinear elliptic problem;
D O I
10.1016/S0362-546X(98)00180-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An existence theorem is proven for equations of the form A(u)+g(x, u, ▽u) = f in D′(Ω), u∈W01,p(Ω), g(x, u, ▽u)∈L1(Ω), in the setting of Orlicz-Sobolev spaces W1 LM. The result is obtained under the assumption that the N-function M satisfies the Δ2 condition near infinity, but it is not clear whether the proof can be further adapted to obtain the same result for general N-functions.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   ORLICZ-SOBOLEV IMBEDDING THEOREM [J].
ADAMS, RA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) :241-257
[3]   Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (11) :1769-1784
[4]   AN APPROXIMATION THEOREM IN HIGHER-ORDER ORLICZ-SOBOLEV SPACES AND APPLICATIONS [J].
BENKIRANE, A ;
GOSSEZ, JP .
STUDIA MATHEMATICA, 1989, 92 (03) :231-255
[5]  
BENKIRANE A, IN PRESS NONLINEAR A
[6]  
BENKIRANE A, 1990, ANN FACULTE SCI TOUL, V11, P67
[7]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[8]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[9]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[10]   STRONGLY NONLINEAR ELLIPTIC-EQUATIONS HAVING NATURAL GROWTH TERMS AND L(1) DATA [J].
BOCCARDO, L ;
GALLOUET, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :573-579