Simplified EEG inverse solution for BCI real-time implementation

被引:0
作者
Duque-Munoz, L. [1 ]
Vargas, F. [1 ]
Lopez, J. D. [1 ]
机构
[1] Univ Antioquia UdeA, Engn Fac, SISTEMIC Res Grp, Calle 70 52-21, Medellin, Colombia
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
Brain-computer interface; EEG brain imaging; Forward problem; Beamformers; Greedy Search; BRAIN-COMPUTER INTERFACES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
EEG brain imaging has become a promising approach in Brain-computer interface applications. However, accurate reconstruction of active regions and computational burden are still open issues. In this paper, we propose to use a simplified forward model that includes the reduction of the cortical dipoles based on Brodmann areas together with state-of-the-art EEG brain imaging techniques. With this approach the well known Beamformers and Greedy Search inverse solutions become feasible for real-time implementation, while guaranteeing lower localization error than previous approaches used in BCI. This methodology was tested with synthetic and real EEG data from a visual attention study. Results show zero localization error in terms of active cortical regions estimation in single 1 s trial datasets, with a computation time of 1.1 s in a non-specialized personal computer. These results open the possibility to obtain in real-time information of active cortical regions in Brain-computer interfaces.
引用
收藏
页码:4051 / 4054
页数:4
相关论文
共 17 条
  • [1] Feasibility of approaches combining sensor and source features in brain-computer interface
    Ahn, Minkyu
    Hong, Jun Hee
    Jun, Sung Chan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2012, 204 (01) : 168 - 178
  • [2] Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches
    Belardinelli, Paolo
    Ortiz, Erick
    Barnes, Gareth
    Noppeney, Uta
    Preissl, Hubert
    [J]. PLOS ONE, 2012, 7 (12):
  • [3] Improving quantification of functional networks with EEG inverse problem: Evidence from a decoding point of view
    Besserve, Michel
    Martinerie, Jacques
    Garnero, Line
    [J]. NEUROIMAGE, 2011, 55 (04) : 1536 - 1547
  • [4] Localisation of cognitive tasks used in EEG-based BCIs
    Dyson, M.
    Sepulveda, F.
    Gan, J. Q.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2010, 121 (09) : 1481 - 1493
  • [5] Brain Computer Interfaces, a Review
    Fernando Nicolas-Alonso, Luis
    Gomez-Gil, Jaime
    [J]. SENSORS, 2012, 12 (02) : 1211 - 1279
  • [6] Geyer S., 2014, ENCY NEUROLOGICAL SC, P550
  • [7] Review on solving the inverse problem in EEG source analysis
    Grech, Roberta
    Cassar, Tracey
    Muscat, Joseph
    Camilleri, Kenneth P.
    Fabri, Simon G.
    Zervakis, Michalis
    Xanthopoulos, Petros
    Sakkalis, Vangelis
    Vanrumste, Bart
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2008, 5 (1)
  • [8] Beamforming in Noninvasive Brain-Computer Interfaces
    Grosse-Wentrup, Moritz
    Liefhold, Christian
    Gramann, Klaus
    Buss, Martin
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (04) : 1209 - 1219
  • [9] INTERPRETING MAGNETIC-FIELDS OF THE BRAIN - MINIMUM NORM ESTIMATES
    HAMALAINEN, MS
    ILMONIEMI, RJ
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1994, 32 (01) : 35 - 42
  • [10] Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG
    Kaiser, Vera
    Bauernfeind, Guenther
    Kreilinger, Alex
    Kaufmann, Tobias
    Kuebler, Andrea
    Neuper, Christa
    Mueller-Putz, Gernot R.
    [J]. NEUROIMAGE, 2014, 85 : 432 - 444