Elementary Toda orbits and integrable lattices

被引:32
作者
Faybusovich, L [1 ]
Gekhtman, M [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1063/1.533279
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that key features of several important integrable lattices appear naturally in a framework of the full Toda flows. Using special symplectic leaves for these flows, we construct a family of bi-Hamiltonian integrable lattices that interpolates between the nonrelativistic and relativistic Toda lattices. (C) 2000 American Institute of Physics. [S0022- 2488(00)04905-7].
引用
收藏
页码:2905 / 2921
页数:17
相关论文
共 31 条
[21]   SOLUTION TO A GENERALIZED TODA LATTICE AND REPRESENTATION THEORY [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1979, 34 (03) :195-338
[22]   NONLINEAR POISSON STRUCTURES AND UPSILON-MATRICES [J].
LI, LC ;
PARMENTIER, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (04) :545-563
[23]  
MOSER J, 1974, SPRINGER NOTES PHYSI, P417
[24]   Peakons, r-matrix and Toda lattice [J].
Ragnisco, O ;
Bruschi, M .
PHYSICA A, 1996, 228 (1-4) :150-159
[25]  
Reyman A, 1994, ENCYCL MATH SCI, V16, P116
[26]   RELATIVISTIC TODA SYSTEMS [J].
RUIJSENAARS, SNM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 133 (02) :217-247
[27]  
SINGER S, 1990, THESIS NEW YORK U
[28]   ON THE BI-HAMILTONIAN STRUCTURE OF TODA AND RELATIVISTIC TODA-LATTICES [J].
SURIS, YB .
PHYSICS LETTERS A, 1993, 180 (06) :419-429
[29]  
SURIS YB, 1997, INVERSE PROBL, V13, P1211
[30]   ISOSPECTRAL FLOWS [J].
WATKINS, DS .
SIAM REVIEW, 1984, 26 (03) :379-391