Elementary Toda orbits and integrable lattices

被引:32
作者
Faybusovich, L [1 ]
Gekhtman, M [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1063/1.533279
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that key features of several important integrable lattices appear naturally in a framework of the full Toda flows. Using special symplectic leaves for these flows, we construct a family of bi-Hamiltonian integrable lattices that interpolates between the nonrelativistic and relativistic Toda lattices. (C) 2000 American Institute of Physics. [S0022- 2488(00)04905-7].
引用
收藏
页码:2905 / 2921
页数:17
相关论文
共 31 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]  
ALBER M, IN PRESS CRM P LECT
[3]  
Ammar G.S., 1994, FIELDS I COMMUN, P27
[4]   Parametrizations of canonical bases and totally positive matrices [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 1996, 122 (01) :49-149
[5]  
Berezanski Yu. M., 1986, Reports on Mathematical Physics, V24, P21, DOI 10.1016/0034-4877(86)90038-8
[6]  
Bloch AM, 1998, J GEOM PHYS, V27, P230, DOI 10.1016/S0393-0440(97)00081-8
[7]   TODA FLOWS, INVERSE SPECTRAL TRANSFORM AND REALIZATION-THEORY [J].
BROCKETT, RW ;
FAYBUSOVICH, LE .
SYSTEMS & CONTROL LETTERS, 1991, 16 (02) :79-88
[8]   A TRI-HAMILTONIAN FORMULATION OF THE FULL KOSTANT-TODA LATTICE [J].
DAMIANOU, PA ;
PASCHALIS, P ;
SOPHOCLEOUS, C .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (01) :17-24
[9]   THE TODA FLOW ON A GENERIC ORBIT IS INTEGRABLE [J].
DEIFT, P ;
LI, LC ;
NANDA, T ;
TOMEI, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :183-232
[10]   POISSON GEOMETRY OF THE ANALOG OF THE MIURA MAPS AND BACKLUND-DARBOUX TRANSFORMATIONS FOR EQUATIONS OF TODA TYPE AND PERIODIC TODA FLOWS [J].
DEIFT, P ;
LI, LC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :201-214