Discrete Haze Level Dehazing Network

被引:23
作者
Cong, Xiaofeng [1 ]
Gui, Jie [2 ]
Miao, Kai-Chao [3 ]
Zhang, Jun [4 ]
Wang, Bing [5 ]
Chen, Peng [4 ]
机构
[1] AnHui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei, Peoples R China
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Anhui Meteorol Bur, Hefei, Peoples R China
[4] AnHui Univ, Hefei, Peoples R China
[5] Anhui Univ Technol, Maanshan, Peoples R China
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
基金
中国国家自然科学基金;
关键词
dehazing; multi-domain; GAN; MS-SSIM; Perceptual; GENERATIVE ADVERSARIAL NETWORKS; IMAGE;
D O I
10.1145/3394171.3413876
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In contrast to traditional dehazing methods, deep learning based single image dehazing (SID) algorithms have achieved better performances by creating a mapping function from haze to haze-free images. Usually, the images taken from the natural scenes have different haze levels, but deep SID algorithms only process the hazy images as one group. It makes the deep SID algorithms difficult to deal with the image set with some images having specific haze density. In this paper, a Discrete Haze Level Dehazing network (DHL-Dehaze), a very effective method to dehaze multiple different haze level images, is proposed. The proposed approach considers a single image dehazing problem as a multi-domain image-to-image translation, instead of grouping all hazy images into the same domain. DHL-Dehaze provides computational derivation to describe the role of different haze levels for image translation. To verify the proposed approach, we synthesize two largescale datasets with multiple haze level images based on the NYU-Depth and DIML/CVL datasets. The experiments show that DHL-Dehaze can obtain excellent quantitative and qualitative dehazing results, especially when the haze concentration is high.
引用
收藏
页码:1828 / 1836
页数:9
相关论文
共 40 条
[1]   NTIRE 2018 Challenge on Image Dehazing: Methods and Results [J].
Ancuti, Cosmin ;
Ancuti, Codruta O. ;
Timofte, Radu ;
Van Gool, Luc ;
Zhang, Lei ;
Yang, Ming-Hsuan ;
Patel, Vishal M. ;
Zhang, He ;
Sindagi, Vishwanath A. ;
Zhao, Ruhao ;
Ma, Xiaoping ;
Qin, Yong ;
Jia, Limin ;
Friedel, Klaus ;
Ki, Sehwan ;
Sim, Hyeonjun ;
Choi, Jae-Seok ;
Kim, Soo Ye ;
Seo, Soomin ;
Kim, Saehun ;
Kim, Munchurl ;
Mondal, Ranjan ;
Santra, Sanchayan ;
Chanda, Bhabatosh ;
Liu, Jinlin ;
Mei, Kangfu ;
Li, Juncheng ;
Luyao ;
Fang, Faming ;
Jiang, Aiwen ;
Qu, Xiaochao ;
Liu, Ting ;
Wang, Pengfei ;
Sun, Biao ;
Deng, Jiangfan ;
Zhao, Yuhang ;
Hong, Ming ;
Huang, Jingying ;
Chen, Yizhi ;
Chen, Erin ;
Yu, Xiaoli ;
Wu, Tingting ;
Genc, Anil ;
Engin, Deniz ;
Ekenel, Hazim Kemal ;
Liu, Wenzhe ;
Tong, Tong ;
Li, Gen ;
Gao, Qinquan ;
Li, Zhan .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1004-1014
[2]   I-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Indoor Images [J].
Ancuti, Cosmin ;
Ancuti, Codruta O. ;
Timofte, Radu ;
De Vleeschouwer, Christophe .
ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2018, 2018, 11182 :620-631
[3]  
Ancuti C, 2016, IEEE IMAGE PROC, P2226, DOI 10.1109/ICIP.2016.7532754
[4]  
[Anonymous], P IEEE C COMP VIS PA
[5]  
[Anonymous], 2017, ARXIV PREPRINT ARXIV
[6]   Non-Local Image Dehazing [J].
Berman, Dana ;
Treibitz, Tali ;
Avidan, Shai .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1674-1682
[7]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[8]  
Cho J., 2019, ARXIV190410230
[9]   StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [J].
Choi, Yunjey ;
Choi, Minje ;
Kim, Munyoung ;
Ha, Jung-Woo ;
Kim, Sunghun ;
Choo, Jaegul .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8789-8797
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848