A lower bound on the least signless Laplacian eigenvalue of a graph

被引:7
|
作者
Guo, Shu-Guang [1 ]
Chen, Yong-Gao [2 ,3 ]
Yu, Guanglong [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Graph; Signless Laplacian; Least eigenvalue;
D O I
10.1016/j.laa.2014.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices and m edges. Lima et al. (2011) in [2] posed the following conjecture on the least eigenvalue q(n)(G) of the signless Laplacian of G: q(n)(G) >= 2m/(n - 1) - n + 2. In this paper we prove a stronger result: For any graph with n vertices and m edges, we have q(n)(G) >= 2m/(n - 2) - n + 1(n >= 6). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [41] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [42] The least H-eigenvalue of signless Laplacian of non-odd-bipartite hypergraphs
    Wan, Jiang-Chao
    Fan, Yi-Zheng
    Wang, Yi
    DISCRETE MATHEMATICS, 2020, 343 (09)
  • [43] AN INCOMPARABLE UPPER BOUND FOR THE LARGEST LAPLACIAN GRAPH EIGENVALUE
    Sorgun, Sezer
    ARS COMBINATORIA, 2017, 133 : 197 - 204
  • [44] Lower bounds for the least Laplacian eigenvalue of unbalanced blocks
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 : 145 - 152
  • [45] The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    DISCRETE MATHEMATICS, 2014, 334 : 20 - 25
  • [46] The least signless Laplacian eigenvalue of non-bipartite graphs with given stability number
    Wen, Qin
    Zhao, Qin
    Liu, Huiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 476 : 148 - 158
  • [47] Nordhaus-Gaddum-type result on the second largest signless Laplacian eigenvalue of a graph
    Das, Kinkar Chandra
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (06): : 1035 - 1044
  • [48] Eigenvectors of Laplacian or signless Laplacian of hypergraphs associated with zero eigenvalue
    Fan, Yi-Zheng
    Wang, Yi
    Bao, Yan-Hong
    Wan, Jiang-Chao
    Li, Min
    Zhu, Zhu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 579 : 244 - 261
  • [49] Lower bounds on the third smallest Laplacian eigenvalue of a graph
    Pan, YL
    Li, JS
    Hou, YP
    Merris, R
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (03): : 209 - 218
  • [50] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):