A lower bound on the least signless Laplacian eigenvalue of a graph

被引:7
|
作者
Guo, Shu-Guang [1 ]
Chen, Yong-Gao [2 ,3 ]
Yu, Guanglong [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Graph; Signless Laplacian; Least eigenvalue;
D O I
10.1016/j.laa.2014.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices and m edges. Lima et al. (2011) in [2] posed the following conjecture on the least eigenvalue q(n)(G) of the signless Laplacian of G: q(n)(G) >= 2m/(n - 1) - n + 2. In this paper we prove a stronger result: For any graph with n vertices and m edges, we have q(n)(G) >= 2m/(n - 2) - n + 1(n >= 6). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [21] The Upper Bound for the Largest Signless Laplacian Eigenvalue of Weighted Graphs
    Buyukkose, Serife
    Mutlu, Nursah
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (04): : 709 - 714
  • [22] Lower bound for the second smallest eigenvalue of directed rooted graph Laplacian
    Huang Chao
    Ye Xudong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 5994 - 5997
  • [23] On the maximal eigenvalue of signless P-Laplacian matrix for a graph
    Mei, Ying
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 169 - 172
  • [24] EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95): : 11 - 27
  • [25] A sharper lower bound on the signless Laplacian Estrada index
    Zhang, Hongbing
    ARS COMBINATORIA, 2018, 139 : 19 - 26
  • [26] The smallest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Oliveira, Carla Silva
    Maia de Abreu, Nair Maria
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2570 - 2584
  • [27] Bounds for the least Laplacian eigenvalue of a signed graph
    Hou, YP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 955 - 960
  • [28] Bounds for the Least Laplacian Eigenvalue of a Signed Graph
    Yao Ping HOU Department of Mathematics
    Acta Mathematica Sinica(English Series), 2005, 21 (04) : 955 - 960
  • [29] Bounds for the Least Laplacian Eigenvalue of a Signed Graph
    Yao Ping Hou
    Acta Mathematica Sinica, 2005, 21 : 955 - 960
  • [30] ON THE AVERAGE ECCENTRICITY, THE HARMONIC INDEX AND THE LARGEST SIGNLESS LAPLACIAN EIGENVALUE OF A GRAPH
    Deng, Hanyuan
    Balachandran, S.
    Ayyaswamy, S. K.
    Venkatakrishnan, Y. B.
    TRANSACTIONS ON COMBINATORICS, 2017, 6 (04) : 43 - 50