A lower bound on the least signless Laplacian eigenvalue of a graph

被引:7
|
作者
Guo, Shu-Guang [1 ]
Chen, Yong-Gao [2 ,3 ]
Yu, Guanglong [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Graph; Signless Laplacian; Least eigenvalue;
D O I
10.1016/j.laa.2014.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices and m edges. Lima et al. (2011) in [2] posed the following conjecture on the least eigenvalue q(n)(G) of the signless Laplacian of G: q(n)(G) >= 2m/(n - 1) - n + 2. In this paper we prove a stronger result: For any graph with n vertices and m edges, we have q(n)(G) >= 2m/(n - 2) - n + 1(n >= 6). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [1] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Chen, Xiaodan
    Hou, Yaoping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2011 - 2018
  • [2] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Xiaodan Chen
    Yaoping Hou
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2011 - 2018
  • [3] A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph
    Cardoso, Domingos M.
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2770 - 2780
  • [4] On the multiplicity of the least signless Laplacian eigenvalue of a graph
    Tian, Fenglei
    Guo, Shu-Guang
    Wong, Dein
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [5] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    He, Chang-Xiang
    Zhou, Min
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1183 - 1192
  • [6] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    Chang-Xiang He
    Min Zhou
    Graphs and Combinatorics, 2014, 30 : 1183 - 1192
  • [7] The least eigenvalue of the signless Laplacian of the complements of trees
    Li, Shuchao
    Wang, Shujing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2398 - 2405
  • [8] ON THE LEAST SIGNLESS LAPLACIAN EIGENVALUE OF SOME GRAPHS
    Yu, Guanglong
    Guo, Shuguang
    Xu, Meiling
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 560 - 573
  • [9] Bipartiteness and the least eigenvalue of signless Laplacian of graphs
    Fallat, Shaun
    Fan, Yi-Zheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3254 - 3267
  • [10] The least eigenvalue of signless Laplacian of graphs under perturbation
    Wang, Yi
    Fan, Yi-Zheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2084 - 2092