A lower bound on the least signless Laplacian eigenvalue of a graph

被引:7
作者
Guo, Shu-Guang [1 ]
Chen, Yong-Gao [2 ,3 ]
Yu, Guanglong [1 ]
机构
[1] Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Graph; Signless Laplacian; Least eigenvalue;
D O I
10.1016/j.laa.2014.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph on n vertices and m edges. Lima et al. (2011) in [2] posed the following conjecture on the least eigenvalue q(n)(G) of the signless Laplacian of G: q(n)(G) >= 2m/(n - 1) - n + 2. In this paper we prove a stronger result: For any graph with n vertices and m edges, we have q(n)(G) >= 2m/(n - 2) - n + 1(n >= 6). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 6 条
[1]  
[Anonymous], RES REPORT
[2]   The smallest eigenvalue of the signless Laplacian [J].
de Lima, Leonardo Silva ;
Oliveira, Carla Silva ;
Maia de Abreu, Nair Maria ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2570-2584
[3]   ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS [J].
Feng, Lihua ;
Yu, Guihai .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :35-38
[4]  
Horn R.A., 2012, Matrix Analysis
[5]   A note on Laplacian graph eigenvalues [J].
Merris, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :33-35
[6]   Bounds on the Q-spread of a graph [J].
Oliveira, Carla Silva ;
de Lima, Leonardo Silva ;
Maia de Abreu, Nair Maria ;
Kirkland, Steve .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2342-2351