Design and Fabrication of a Four-Arm-Structure MEMS Gripper

被引:63
作者
Chen, Tao [1 ]
Chen, Liguo [1 ]
Sun, Lining [1 ]
Li, Xinxin [2 ]
机构
[1] Harbin Inst Technol, Inst Robot, State Key Lab Robot & Syst, Harbin 150080, Peoples R China
[2] Chinese Acad Sci, State Key Lab Transducer Technol, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
关键词
Electrostatic comb drive; microelectromechanical systems (MEMS); microgripper; sidewall piezoresistive sensor; FORCE SENSOR;
D O I
10.1109/TIE.2008.2005147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is focused on the design and fabrication of a four-arm-structure microelectromechanical systems gripper integrated with sidewall piezoresistive force sensors. Surface and bulk micromachining technologies are employed to fabricate the microgripper from a single-crystal silicon wafer (i.e., no silicon-on-insulator wafer is used). A vertical sidewall surface piezoresistor etching technique is used to form the side direction force sensors. The end effector of this gripper is a four-arm structure: two fixed cantilever arms integrated with piezoresistive sensors are designed to sense the gripping force. The resolution of the force sensor is in the micronewton range and, therefore, provides feedback of the forces that dominate the micromanipulation processes. An electrostatically driven microactuator is designed to provide the force to operate the other two movable arms. In this way, it creates a deflection of 25 mu m at the arm tip, and the range of the operation is 30-130 mu m. Experimental results show that it can successfully provide force sensing and play a main role in preventing the damage of microparts in micromanipulation and microassembly tasks.
引用
收藏
页码:996 / 1004
页数:9
相关论文
共 24 条
[11]   Lateral nano-Newton force-sensing piezoresistive cantilever for microparticle handling [J].
Duc, T. Chu ;
Creemer, J. F. ;
Sarro, P. M. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (06) :S102-S106
[12]  
DUC TC, 2006, P 19 IEEE INT C MICR, P662
[13]   Microassembly experiments with transparent electrostatic gripper under optical and vision-based control [J].
Enikov, ET ;
Minkov, LL ;
Clark, S .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2005, 52 (04) :1005-1012
[14]   POLYSILICON MICROGRIPPER [J].
KIM, CJ ;
PISANO, AP ;
MULLER, RS ;
LIM, MG .
SENSORS AND ACTUATORS A-PHYSICAL, 1992, 33 (03) :221-227
[15]  
Kim HS, 2005, FOOD SCI BIOTECHNOL, V14, P6
[16]   Force sensing and control in micromanipulation [J].
Lu, Zhe ;
Chen, Peter C. Y. ;
Lin, Wei .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2006, 36 (06) :713-724
[17]   From "macro" to "micro" manipulation: Models and experiments [J].
Menciassi, A ;
Eisinberg, A ;
Izzo, I ;
Dario, P .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2004, 9 (02) :311-320
[18]   Electro-thermally actuated microgrippers with integrated force-feedback [J].
Molhave, K ;
Hansen, O .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (06) :1265-1270
[19]  
Park J, 2003, MICROSYST TECHNOL, V9, P511, DOI [10.1007/s00542-002-0267-6, 10.1007/S00542-002-0267-6]
[20]   A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives [J].
Sun, Y ;
Nelson, BJ ;
Potasek, DP ;
Enikov, E .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12 (06) :832-840