Kernel optimisation for KPCA based on Gaussianity estimation

被引:9
|
作者
Kang, Qi [1 ]
Wang, Kang [1 ]
Huang, Bingyao [2 ]
An, Jing [3 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[3] Shanghai Inst Technol, Sch Elect & Elect Engn, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
optimisation; principle component analysis; feature space; Gaussian distribution estimation; Kernel parameter; PRINCIPAL COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1504/IJBIC.2014.060620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel-based principle component analysis (KPCA) is an effective feature extraction method. It extends PCA to nonlinear cases using kernel trick. The performance of KPCA relies on the pre-selected parameter of kernel function. In this paper, we propose a kernel parameter optimisation method by using principle component subspace-based Gaussianity estimation, based on the idea that optimal kernel parameters lead the mapped feature space close to Gaussian distribution. By using subspace coordinates in feature space generalised by KPCA, the mapping data problem is properly solved. Further, we estimate the Gaussian distribution approximation degree in subspace by using the establishing condition for multidimensional Gaussian distribution in statistics. Experiment results are shown to verify the kernel parameter optimisation algorithm by testing on both simulation and real-world data.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 50 条
  • [41] Gaussianity-Preserving Event-Based State Estimation With an FIR-Based Stochastic Trigger
    Schmitt, Eva Julia
    Noack, Benjamin
    Krippner, Wolfgang
    Hanebeck, Uwe D.
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 769 - 774
  • [42] OPTIMISATION OF A CLUSTERING BASED CRITERION FOR BLIND CHANNEL ESTIMATION
    Terre, Michel
    Fety, Luc
    Paul, Nicolas
    SPAWC: 2009 IEEE 10TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2009, : 171 - +
  • [43] Moving horizon estimation based on distributionally robust optimisation
    Yang, Aolei
    Wang, Hao
    Sun, Qing
    Fei, Minrui
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (07) : 1363 - 1376
  • [44] DNN-based Topology Optimisation: Spatial Invariance and Neural Tangent Kernel
    Dupuis, Benjamin
    Jacot, Arthur
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [45] Product quality improvement method in manufacturing process based on kernel optimisation algorithm
    Wei, Zhe
    Feng, Yixiong
    Hong, Zhaoxi
    Qu, Rongxia
    Tan, Jianrong
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (19) : 5597 - 5608
  • [46] Automatic Modulation Classification Based on Kernel Density Estimation
    Abuella, Hisham
    Ozdemir, Mehmet Kemal
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2016, 39 (03): : 203 - 209
  • [47] A new algorithm for clustering based on kernel density estimation
    Matioli, L. C.
    Santos, S. R.
    Kleina, M.
    Leite, E. A.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (02) : 347 - 366
  • [48] A stereo matching method based on kernel density estimation
    Niu, Jun
    Song, Rui
    Li, Yibin
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 321 - 325
  • [49] Convergence Analysis of MAP based Blur Kernel Estimation
    Cho, Sunghyun
    Lee, Seungyong
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4818 - 4826
  • [50] Nonparametric Kernel Estimation Based on Fuzzy Random Variables
    Hesamian, Gholamreza
    Akbari, Mohammad Ghasem
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (01) : 84 - 99