Kernel optimisation for KPCA based on Gaussianity estimation

被引:9
|
作者
Kang, Qi [1 ]
Wang, Kang [1 ]
Huang, Bingyao [2 ]
An, Jing [3 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[3] Shanghai Inst Technol, Sch Elect & Elect Engn, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
optimisation; principle component analysis; feature space; Gaussian distribution estimation; Kernel parameter; PRINCIPAL COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1504/IJBIC.2014.060620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel-based principle component analysis (KPCA) is an effective feature extraction method. It extends PCA to nonlinear cases using kernel trick. The performance of KPCA relies on the pre-selected parameter of kernel function. In this paper, we propose a kernel parameter optimisation method by using principle component subspace-based Gaussianity estimation, based on the idea that optimal kernel parameters lead the mapped feature space close to Gaussian distribution. By using subspace coordinates in feature space generalised by KPCA, the mapping data problem is properly solved. Further, we estimate the Gaussian distribution approximation degree in subspace by using the establishing condition for multidimensional Gaussian distribution in statistics. Experiment results are shown to verify the kernel parameter optimisation algorithm by testing on both simulation and real-world data.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 50 条
  • [21] C-KPCA: Custom Kernel PCA for Cancer Classification
    Van-Sang Ha
    Ha-Nam Nguyen
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016), 2016, 9729 : 459 - 467
  • [22] The optimization of the kind and parameters of kernel function in KPCA for process monitoring
    Jia, Mingxing
    Xu, Hengyuan
    Liu, Xiaofei
    Wang, Ning
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 46 : 94 - 104
  • [23] Estimation of controller benefits: an optimisation based approach
    Zhou, Y
    Forbes, JF
    Bao, J
    McLellan, PJ
    APPITA JOURNAL, 2003, 56 (02): : 164 - 164
  • [24] Comparison of kernel based PDF estimation methods
    Freund, David E.
    Burlina, Philippe
    Banerjee, Amit
    Justen, Erik
    AUTOMATIC TARGET RECOGNITION XIX, 2009, 7335
  • [25] Stream Clustering Based on Kernel Density Estimation
    Lodi, Stefano
    Moro, Gianluca
    Sartori, Claudio
    ECAI 2006, PROCEEDINGS, 2006, 141 : 799 - +
  • [26] Transductive reliability estimation for kernel based classifiers
    Tzikas, Dimitris
    Kukar, Matjaz
    Likas, Aristidis
    ADVANCES IN INTELLIGENT DATA ANALYSIS VII, PROCEEDINGS, 2007, 4723 : 37 - +
  • [27] Kernel based approach for accurate surface estimation
    Singh, Mahesh K.
    Venkatesh, K. S.
    Dutta, Ashish
    COMPUTERS & ELECTRICAL ENGINEERING, 2016, 56 : 763 - 772
  • [28] Kernel-based estimation of spectral riskmeasures
    Biswas, Suparna
    Sen, Rituparna
    JOURNAL OF RISK, 2024, 26 (05):
  • [29] Kernel-Based Skyline Cardinality Estimation
    Zhang, Zhenjie
    Yang, Yin
    Cai, Ruichu
    Papadias, Dimitris
    Tung, Anthony
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 509 - 521
  • [30] Speed Estimation based on Multiple Kernel Learning
    Wei, Chao
    Xiao, Jianli
    Liu, Yuncai
    2012 12TH INTERNATIONAL CONFERENCE ON ITS TELECOMMUNICATIONS (ITST-2012), 2012, : 24 - 28