Kernel optimisation for KPCA based on Gaussianity estimation

被引:9
|
作者
Kang, Qi [1 ]
Wang, Kang [1 ]
Huang, Bingyao [2 ]
An, Jing [3 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[2] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[3] Shanghai Inst Technol, Sch Elect & Elect Engn, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
optimisation; principle component analysis; feature space; Gaussian distribution estimation; Kernel parameter; PRINCIPAL COMPONENT ANALYSIS; ALGORITHM;
D O I
10.1504/IJBIC.2014.060620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel-based principle component analysis (KPCA) is an effective feature extraction method. It extends PCA to nonlinear cases using kernel trick. The performance of KPCA relies on the pre-selected parameter of kernel function. In this paper, we propose a kernel parameter optimisation method by using principle component subspace-based Gaussianity estimation, based on the idea that optimal kernel parameters lead the mapped feature space close to Gaussian distribution. By using subspace coordinates in feature space generalised by KPCA, the mapping data problem is properly solved. Further, we estimate the Gaussian distribution approximation degree in subspace by using the establishing condition for multidimensional Gaussian distribution in statistics. Experiment results are shown to verify the kernel parameter optimisation algorithm by testing on both simulation and real-world data.
引用
收藏
页码:91 / 107
页数:17
相关论文
共 50 条
  • [1] Simultaneous Estimation of the Number of Principal Components and Kernel Parameter in KPCA
    Fu, Yujia
    Tao, Hongfeng
    Yang, Huizhong
    2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 149 - 154
  • [2] KPCA Algorithm Based on Improved Wavelet Kernel Function
    Ji, Zhen-ping
    Gao, Jin-feng
    Zhang, Xiao-jie
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5835 - 5839
  • [3] Kernel density estimation of CSD distributions - an application to knowledge based molecular optimisation
    Patrick McCabe
    Oliver Korb
    Jason Cole
    Robin Taylor
    Journal of Cheminformatics, 6 (Suppl 1)
  • [4] Determining the Optimal Kernel Parameter in KPCA Based on Sample Reconstruction
    Ji Hongquan
    He Xiao
    Li Gang
    Zhou Donghua
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6408 - 6414
  • [5] Multiple Kernel Learning with Gaussianity Measures
    Hino, Hideitsu
    Reyhani, Nima
    Murata, Noboru
    NEURAL COMPUTATION, 2012, 24 (07) : 1853 - 1881
  • [6] KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions
    Kaieda, K
    Abe, S
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2004, 37 (03) : 189 - 217
  • [7] Study on System Identification Based on Kernel Function KPCA-SVR
    Xiao, Huihui
    Li, Taifu
    Ji, Shengli
    Li, Shan
    Su, Yingying
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2554 - +
  • [8] KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions
    Abe, S. (abe@eedept.kobe-u.ac.jp), 1600, Elsevier Inc. (37):
  • [9] Research on Rolling Bearing Fault Diagnosis Based on Volterra Kernel Identification and KPCA
    Wang, Yahui
    Dong, Rong
    Wang, Xinchao
    Zhang, Xunying
    SHOCK AND VIBRATION, 2023, 2023
  • [10] Seismic attributes optimization based on kernel principal component analysis (KPCA) and application
    Yin, Xing-Yao
    Kong, Guo-Ying
    Zhang, Guang-Zhi
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2008, 43 (02): : 179 - 183