On cyclic fixed points of spectra

被引:8
|
作者
Boekstedt, Marcel [1 ]
Bruner, Robert R. [2 ]
Lunoe-Nielsen, Sverre [3 ]
Rognes, John [3 ]
机构
[1] Aarhus Univ, Dept Math Sci, Aarhus, Denmark
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Univ Oslo, Dept Math, Oslo, Norway
关键词
Segal conjecture; Cyclic p-group; Fixed points; Tate construction; Smash power; Topological Hochschild homology; TOPOLOGICAL HOCHSCHILD HOMOLOGY; ALGEBRAIC K-THEORY; SEGAL CONJECTURE; STABLE-HOMOTOPY;
D O I
10.1007/s00209-013-1187-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite -group and a bounded below -spectrum of finite type mod , the -equivariant Segal conjecture for asserts that the canonical map , from -fixed points to -homotopy fixed points, is a -adic equivalence. Let be the cyclic group of order . We show that if the -equivariant Segal conjecture holds for a -spectrum , as well as for each of its geometric fixed point spectra for , then the -equivariant Segal conjecture holds for . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条
  • [21] Fixed Points of Generalized Conjugations
    Marques Alves, M.
    Svaiter, B. F.
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (02) : 577 - 588
  • [22] On fixed points of quantum gravity
    Litim, Daniel
    CENTURY OF RELATIVITY PHYSICS, 2006, 841 : 322 - 329
  • [23] Higher topological cyclic homology and the Segal conjecture for tori
    Carlsson, Gunnar
    Douglas, Christopher L.
    Dundas, Bjorn Ian
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1823 - 1874
  • [24] Fixed points of parameterized perturbations
    McLennan, Andrew
    JOURNAL OF MATHEMATICAL ECONOMICS, 2014, 55 : 186 - 189
  • [25] Fixed points of asymptotic contractions
    Kirk, WA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) : 645 - 650
  • [26] Fixed points of Minkowski valuations
    Ortega-Moreno, Oscar
    Schuster, Franz E.
    ADVANCES IN MATHEMATICS, 2021, 392
  • [27] Computational complexity of fixed points
    Sikorski, Krzysztof
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 6 (02) : 249 - 283
  • [28] Fixed points in uniform spaces
    Phichet Chaoha
    Sittichoke Songsa-ard
    Fixed Point Theory and Applications, 2014
  • [29] FIXED POINTS OF KOCH MAPS
    Le, Van Tu
    CONFORMAL GEOMETRY AND DYNAMICS, 2022, 26 : 10 - 33
  • [30] Nonlinear fixed points preservers
    Y. Bouramdane
    M. Ech-Cherif El Kettani
    A. Lahssaini
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1269 - 1276