Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrodinger equation in an optical fiber, fluid or plasma

被引:44
|
作者
Zuo, Da-Wei [1 ,2 ,3 ]
Gao, Yi-Tian [1 ,2 ]
Xue, Long [1 ,2 ,4 ]
Feng, Yu-Jie [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Key Lab Fluid Mech, Minist Educ, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[4] Aviat Univ Air Force, Flight Training Base, Fuxin 123100, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; Generalized nonlinear Schrodinger equation in an optical fiber; fluid or plasma; Rogue-wave solutions; Multi-soliton solutions;
D O I
10.1007/s11082-015-0290-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a variable-coefficient generalized nonlinear Schrodinger equation, which can be used to describe the nonlinear phenomena in the optical fiber, fluid or plasma, is investigated. Lax pair, higher-order rogue-wave and multi-soliton solutions, Darboux transformation and generalized Darboux transformation are obtained. Wave propagation and interaction are analyzed: (1) The Hirota and Lakshmanan-Porsezian-Daniel coefficients affect the propagation velocity and path of each one soliton; three types of soliton interaction have been attained: the bound state, one bell-shape soliton's catching up with the other and two bell-shape soliton head-on interaction. Multi-soliton interaction is elastic. (2) The Hirota and Lakshmanan-Porsezian-Daniel coefficients affect the propagation direction of the first-step rogue waves and interaction range of the higher-order rogue waves.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma
    Da-Wei Zuo
    Yi-Tian Gao
    Long Xue
    Yu-Jie Feng
    Optical and Quantum Electronics, 2016, 48
  • [2] Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Lan, Zhongzhou
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [3] Numerical solutions of a variable-coefficient nonlinear Schrodinger equation for an inhomogeneous optical fiber
    Yin, Hui-Min
    Tian, Bo
    Chai, Jun
    Liu, Lei
    Sun, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1827 - 1836
  • [4] Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Dai, Chao-Qing
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [5] Soliton solutions for variable coefficient nonlinear Schrodinger equation for optical fiber and their application
    Zong Feng-De
    Dai Chao-Qing
    Yang Qin
    Zhang Jie-Fang
    ACTA PHYSICA SINICA, 2006, 55 (08) : 3805 - 3812
  • [6] Odd-Fold Darboux Transformation, Breather, Rogue-Wave and Semirational Solutions on the Periodic Background for a Variable-Coefficient Derivative Nonlinear Schrodinger Equation in an Inhomogeneous Plasma
    Chen, Su-Su
    Tian, Bo
    Zhang, Chen-Rong
    ANNALEN DER PHYSIK, 2022, 534 (01)
  • [7] Lax Pair, Improved Γ-Riccati Backlund Transformation and Soliton-Like Solutions to Variable-Coefficient Higher-Order Nonlinear Schrodinger Equation in Optical Fibers
    Lu, Yinglin
    Wei, Guangmei
    Liu, Xin
    ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 185 - 192
  • [8] Bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Wang, Dong
    Gao, Yi-Tian
    Su, Jing-Jing
    Ding, Cui-Cui
    MODERN PHYSICS LETTERS B, 2020, 34 (30):
  • [9] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [10] Rogue-wave solutions for the Kundu–Eckhaus equation with variable coefficients in an optical fiber
    Xi-Yang Xie
    Bo Tian
    Wen-Rong Sun
    Ya Sun
    Nonlinear Dynamics, 2015, 81 : 1349 - 1354