p-adic Hodge-theoretic properties of etale cohomology with mod p coefficients, and the cohomology of Shimura varieties

被引:6
作者
Emerton, Matthew [1 ]
Gee, Toby [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
p-adic Hodge theory; Shimura varieties; CONJECTURE; REPRESENTATIONS; WEIGHT;
D O I
10.2140/ant.2015.9.1035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove vanishing results for the cohomology of unitary Shimura varieties with integral coefficients at arbitrary level, and deduce applications to the weight part of Serre's conjecture. In order to do this, we show that the mod p cohomology of a smooth projective variety with semistable reduction over K, a finite extension of Q(p), embeds into the reduction modulo p of a semistable Galois representation with Hodge-Tate weights in the expected range (at least after semisimplifying, in the case of the cohomological degree greater than 1).
引用
收藏
页码:1035 / 1088
页数:54
相关论文
共 47 条
[1]  
[Anonymous], TATA I FUND RES STUD
[2]  
[Anonymous], 1992, J. Amer. Math. Soc., V5, P373
[3]  
ARTHUR J, 1989, ASTERISQUE, P13
[4]  
Artin M., 1973, LECT NOTES MATH, V305
[5]  
BEILINSON AA, 1987, LECT NOTES MATH, V1289, P27
[6]  
BOSTON N, 1991, CR ACAD SCI I-MATH, V312, P323
[7]  
Buzzard K, 2014, LOND MATH S, V414, P135
[8]   Conjecture of inertia moderated by Serre [J].
Caruso, Xavier .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :629-699
[9]   ON THE COHOMOLOGY OF KOTTWITZ ARITHMETIC VARIETIES [J].
CLOZEL, L .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) :757-795
[10]   Modularity of certain potentially Barsotti-Tate Galois representations [J].
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :521-567