Parameter Estimation for VSI-Fed PMSM Based on a Dynamic PSO With Learning Strategies

被引:121
作者
Liu, Zhao-Hua [1 ]
Wei, Hua-Liang [2 ]
Zhong, Qing-Chang [3 ]
Liu, Kan [4 ]
Xiao, Xiao-Shi [1 ]
Wu, Liang-Hong [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[3] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Dynamic; learning strategy; opposition-based learning (OBL); parameter estimation; particle swarm optimization (PSO); permanent magnet synchronous machines (PMSMs); system identification; voltage-source inverter (VSI) nonlinearity; PARTICLE SWARM OPTIMIZATION; MAGNET SYNCHRONOUS MOTORS; MULTIPARAMETER ESTIMATION; DEAD-TIME; COMPENSATION; MACHINES; DESIGN; IDENTIFICATION; ALGORITHMS; RESISTANCE;
D O I
10.1109/TPEL.2016.2572186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dynamic particle swarm optimization with learning strategy (DPSO-LS) is proposed for key parameter estimation for permanent magnet synchronous machines (PMSMs), where the voltage-source inverter (VSI) nonlinearities are taken into account in the parameter estimation model and can be estimated simultaneously with other machine parameters. In the DPSO-LS algorithm, a novel movement modification equation with variable exploration vector is designed to effectively update particles, enabling swarms to cover large areas of search space with large probability and thus the global search ability is enhanced. Moreover, a Gaussian-distribution-based dynamic opposition-based learning strategy is developed to help the pBest jump out local optima. The proposed DPSO-LS can significantly enhance the estimator model accuracy and dynamic performance. Finally, the proposed algorithm is applied to multiple parameter estimation including the VSI nonlinearities of a PMSM. The performance of DPSO-LS is compared with several existing PSO algorithms, and the comparison results show that the proposed parameters estimation method has better performance in tracking the variation of machine parameters effectively and estimating the VSI nonlinearities under different operation conditions.
引用
收藏
页码:3154 / 3165
页数:12
相关论文
共 41 条
[1]   Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study [J].
Boileau, Thierry ;
Leboeuf, Nicolas ;
Nahid-Mobarakeh, Babak ;
Meibody-Tabar, Farid .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2011, 47 (04) :1944-1957
[2]   Fast Estimation of Line-Start Reluctance Machine Parameters by Finite Element Analysis [J].
Boroujeni, Samad Taghipour ;
Bianchi, Nicola ;
Alberti, Luigi .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (01) :1-8
[3]   A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES [J].
BOX, GEP ;
MULLER, ME .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :610-611
[4]   PSO-Based Self-Commissioning of Electrical Motor Drives [J].
Calvini, Marco ;
Carpita, Mauro ;
Formentini, Andrea ;
Marchesoni, Mario .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (02) :768-776
[5]   A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis [J].
Da, Yao ;
Shi, Xiaodong ;
Krishnamurthy, Mahesh .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (08) :4104-4112
[6]   Magnet Temperature Estimation in Surface PM Machines Using High-Frequency Signal Injection [J].
Diaz Reigosa, David ;
Briz, Fernando ;
Garcia, Pablo ;
Manuel Guerrero, Juan ;
Degner, Michael W. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2010, 46 (04) :1468-1475
[7]   Intelligent Optimal Recurrent Wavelet Elman Neural Network Control System for Permanent-Magnet Synchronous Motor Servo Drive [J].
El-Sousy, Fayez F. M. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) :1986-2003
[8]   Mathematical and Experimental Analyses of Oppositional Algorithms [J].
Ergezer, Mehmet ;
Simon, Dan .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (11) :2178-2189
[9]   Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms [J].
Huynh, D. C. ;
Dunnigan, M. W. .
IET ELECTRIC POWER APPLICATIONS, 2010, 4 (09) :748-760
[10]   Dead Time Compensation Method for Voltage-Fed PWM Inverter [J].
Hwang, Seon-Hwan ;
Kim, Jang-Mok .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (01) :1-10