Identifying storm impacts on an embayed, high-energy coastline: examples from western Ireland

被引:130
作者
Cooper, JAG [1 ]
Jackson, DWT [1 ]
Navas, F [1 ]
McKenna, J [1 ]
Malvarez, G [1 ]
机构
[1] Univ Ulster, Sch Biol & Environm Sci, Coastal Studies Res Grp, Coleraine BT52 1SA, Londonderry, North Ireland
关键词
storm; erosion; beach; dune; Ireland;
D O I
10.1016/j.margeo.2004.05.012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5-4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast. Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems. We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted. This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 kin urges caution in generalising regarding regional-scale coastal responses to climatic change. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 280
页数:20
相关论文
共 26 条
[1]  
[Anonymous], SHIFTING SANDS STUDY
[2]  
BOOIJ N, 1993, STANDARD TESTS SHALL
[3]  
BURNINGHAM H, 1998, THESIS U ULSTER
[4]  
BURNINGHAM H, 1998, J COASTAL RES, V26, P24
[5]  
Burt S. D., 1987, Weather, V42, P53, DOI 10.1002/j.1477-8696.1987.tb06919.x
[6]  
Carter R.W.G., 1988, COASTAL ENV
[7]   MECHANISMS ASSOCIATED WITH THE EROSION OF SAND DUNE CLIFFS, MAGILLIGAN, NORTHERN-IRELAND [J].
CARTER, RWG ;
STONE, GW .
EARTH SURFACE PROCESSES AND LANDFORMS, 1989, 14 (01) :1-10
[8]   SUBTIDAL EBB-SHOAL CONTROL OF SHORELINE EROSION VIA WAVE REFRACTION, MAGILLIGAN FORELAND, NORTHERN-IRELAND [J].
CARTER, RWG ;
LOWRY, P ;
STONE, GW .
MARINE GEOLOGY, 1982, 48 (1-2) :M17-M25
[9]  
CARTER RWG, 1975, P ROY IRISH ACAD B, V75, P469
[10]  
CLIFFORD L, 2000, THESIS NATL U IRELAN