New Lower Bounds on the Generalized Hamming Weights of AG Codes

被引:18
作者
Bras-Amoros, Maria [1 ]
Lee, Kwankyu [2 ]
Vico-Oton, Albert [1 ]
机构
[1] Univ Rovira & Virgili, Dept Comp Engn & Math, E-43007 Tarragona, Catalonia, Spain
[2] Chosun Univ, Dept Math & Educ, Kwangju 501759, South Korea
基金
新加坡国家研究基金会;
关键词
Numerical semigroup; ideal of a semigroup; AG code; isometry-dual sets of AG codes; generalized Hamming weights; order bound; Feng-Rao number; Hermitian codes; Garcia-Stichtenoth towers; MINIMUM DISTANCE; WEIERSTRASS SEMIGROUPS; HIERARCHY;
D O I
10.1109/TIT.2014.2343993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A sharp upper bound for the maximum integer not belonging to an ideal of a numerical semigroup is given and the ideals attaining this bound are characterized. Then, the result is used, through the so-called Feng-Rao numbers, to bound the generalized Hamming weights of algebraic-geometry codes. This is further developed for Hermitian codes and the codes on one of the Garcia-Stichtenoth towers, as well as for some more general families.
引用
收藏
页码:5930 / 5937
页数:8
相关论文
共 40 条
[1]   The weight hierarchy of Hermitian codes [J].
Barbero, AI ;
Munuera, C .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (01) :79-104
[2]   DECOMPOSITIONS OF IDEALS INTO IRREDUCIBLE IDEALS IN NUMERICAL SEMIGROUPS [J].
Barucci, Valentina .
JOURNAL OF COMMUTATIVE ALGEBRA, 2010, 2 (03) :281-294
[3]   Acute semigroups, the order bound on the minimum distance, and the Feng-Rao improvements [J].
Bras-Amorós, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1282-1289
[4]  
Bras-Amoros M., 2014, P AC CONT FOR GAL GE, P69
[5]   The order bound on the minimum distance of the one-point codes associated to the Garcia-Stichtenoth tower [J].
Bras-Amoros, Maria ;
O'Sullivan, Michael E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (11) :4241-4245
[6]   Semigroups generated by two consecutive integers and improved hermitian codes [J].
Bras-Amoros, Maria ;
O'Sullivan, Michael E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) :2560-2566
[7]   A note on numerical semigroups [J].
Bras-Amoros, Maria .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) :821-823
[8]   Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models [J].
Campillo, A ;
Farrán, JI .
FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (01) :71-92
[9]   Some new codes from algebraic curves [J].
Ding, Cunsheng ;
Niederreiter, Harald ;
Xing, Chaoping .
2000, IEEE, Piscataway, NJ, United States (46)
[10]  
dela Cruz R., 2010, P IEEE INF THEOR WOR