Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids

被引:181
作者
Wang, Shu [1 ,2 ,3 ]
Qian, Kun [1 ,2 ]
Bi, XingZhen [1 ,2 ]
Huang, Weixin [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Peoples R China
[3] Huangshan Univ, Dept Chem, Huangshan 245041, Peoples R China
基金
美国国家科学基金会;
关键词
TEMPERATURE CO OXIDATION; SEED-MEDIATED SYNTHESIS; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; BIOMEDICAL APPLICATIONS; CARBON-MONOXIDE; SURFACE; SIZE; PARTICLES; CATALYSTS;
D O I
10.1021/jp811296m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have studied the pH-dependent speciation of aqueous HAuCl4 and its influences on the synthesis, structure, and property of Au colloids. Aqueous HAuCl4 consists of [AuClx(OH)(4-x)](-) (x >= 2) at low pH but (AuClx(OH)(4-x)](-) (x < 2) at high pH. By employment of ascorbic acid as the reducing agent and sodium benzenesulfonate (SDBS) as the protecting agent, reduction of aqueous HAuCl4 at low pH leads to the synthesis of well-dispersed and uniform fine Au colloids, whereas that at high pH forms large Au colloids and ensembles of fine Au colloids. These large Au colloids and ensembles of fine Au colloids exhibit strong surface plasmon resonance in the near-infrared region. The SDBS molecules bind to the surface of Au colloids through the S element, and the charge transfer from Au atoms to S elements occurs. The charge is localized around Au atoms directly interacting with SDBS for fine Au colloids but delocalized to the entire Au colloid for large Au colloids and ensembles of fine Au colloids.
引用
收藏
页码:6505 / 6510
页数:6
相关论文
共 37 条
[1]   Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size [J].
Brinas, Raymond P. ;
Hu, Minghui ;
Qian, Luping ;
Lymar, Elena S. ;
Hainfeld, James F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (03) :975-982
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Gold nanocages: Engineering their structure for biomedical applications [J].
Chen, JY ;
Wiley, B ;
Li, ZY ;
Campbell, D ;
Saeki, F ;
Cang, H ;
Au, L ;
Lee, J ;
Li, XD ;
Xia, YN .
ADVANCED MATERIALS, 2005, 17 (18) :2255-2261
[4]   Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications [J].
Ghosh, Sujit Kumar ;
Pal, Tarasankar .
CHEMICAL REVIEWS, 2007, 107 (11) :4797-4862
[5]   Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed [J].
Gole, A ;
Murphy, CJ .
CHEMISTRY OF MATERIALS, 2004, 16 (19) :3633-3640
[6]   Influence of the preparation of Au/Al2O3 on CH4 oxidation activity [J].
Grisel, RJH ;
Kooyman, PJ ;
Nieuwenhuys, BE .
JOURNAL OF CATALYSIS, 2000, 191 (02) :430-437
[7]   GOLD CATALYSTS PREPARED BY COPRECIPITATION FOR LOW-TEMPERATURE OXIDATION OF HYDROGEN AND OF CARBON-MONOXIDE [J].
HARUTA, M ;
YAMADA, N ;
KOBAYASHI, T ;
IIJIMA, S .
JOURNAL OF CATALYSIS, 1989, 115 (02) :301-309
[8]   Gold catalysis [J].
Hashmi, A. Stephen K. ;
Hutchings, Graham J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (47) :7896-7936
[9]   Gold nanostructures: engineering their plasmonic properties for biomedical applications [J].
Hu, Min ;
Chen, Jingyi ;
Li, Zhi-Yuan ;
Au, Leslie ;
Hartland, Gregory V. ;
Li, Xingde ;
Marquez, Manuel ;
Xia, Younan .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (11) :1084-1094
[10]   Self-assembly of gold nanoparticles induced by poly(oxypropylene)diamines [J].
Huang, HY ;
Chen, WF ;
Kuo, PL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (51) :24288-24294