Terahertz pulse time-domain holography method for phase imaging of breast tissue

被引:3
|
作者
Balbekin, Nikolay S. [1 ]
Cassar, Quentin [2 ]
Smolyanskaya, Olga A. [1 ]
Kulya, Maksim S. [1 ]
Petrov, Nikolay, V [1 ]
MacGrogan, Gaetan [3 ]
Guillet, Jean-Paul [2 ]
Mounaix, Patrick [2 ]
Tuchin, Valery V. [1 ,4 ,5 ]
机构
[1] ITMO Univ, 3 Kadetskaya Str, St Petersburg 199004, Russia
[2] Bordeaux Univ, UMR CNRS 5218, IMS Lab, 351 Cours Liberat, F-33045 Talence, France
[3] Bergonie Inst, Dept Pathol, 229 Cours Argonne, F-33076 Bordeaux, France
[4] Saratov NG Chernyshevskii State Univ, 83 Astrakhanskaya Str, Saratov 410012, Russia
[5] RAS, Inst Precis Mech & Control, 24 Rabochaya Str, Saratov 410028, Russia
来源
QUANTITATIVE PHASE IMAGING V | 2019年 / 10887卷
关键词
terahertz spectroscopy; pulsed time-domain holography method; optical properties; breast cancer; tumor; tissue; reconstructed images; SKIN-CANCER; EX-VIVO; SPECTROSCOPY; PROPAGATION; SIMULATIONS;
D O I
10.1117/12.2508711
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pulse holographic imaging along with time-domain spectroscopy scan and tomographic techniques are of great interest. Since the advantages of holography are the lack of focusing optics and high spatial resolution, and, comparing with tomography, less computation cost for numerical reconstruction, this technique is preferable for the analysis of thin histological samples. In this work we have created the experimental scheme that involves measurement of diffraction pattern of the collimated THz pulse field spatial distribution at some distance behind the object in the time-domain mode, thus allowing reconstruction of amplitude and phase distribution at the object plane by numerical backpropagation of the wavefront in the spectral domain. In our experiment, we used a breast biopsy sample containing cancer tissues, we also performed numerical simulations accounting for experimental conditions to con firm the conceptual applicability of the reconstruction method.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Reconstruction Enhancement of Noisy Data in Terahertz Pulse Time-Domain Holography by Iterative Procedure
    Petrov, Nikolay V.
    Balbekin, Nikolay S.
    Kulya, Maksim S.
    Gorodetsky, Andrei A.
    UNCONVENTIONAL OPTICAL IMAGING, 2018, 10677
  • [12] Time-Domain simulating the characteristics of terahertz pulse propagation in biological tissue
    Chai, A. H.
    Yang, Q.
    Yuan, G. X.
    Cao, Z. T.
    2008 INTERNATIONAL SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, VOLS 1 AND 2, 2008, : 269 - 271
  • [13] Terahertz time-domain spectroscopy imaging
    Zhang Zhen-Wei
    Cui Wei-Li
    Zhang Yang
    Zhang Cun-Lin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2006, 25 (03) : 217 - 220
  • [14] Time-domain terahertz compressive imaging
    Zanotto, L.
    Piccoli, R.
    Dong, J.
    Caraffini, D.
    Morandotti, R.
    Razzari, L.
    OPTICS EXPRESS, 2020, 28 (03) : 3795 - 3802
  • [15] PICOSECOND PULSE SHAPING BY PHOTOCHEMICAL TIME-DOMAIN HOLOGRAPHY
    REBANE, A
    KAARLI, R
    CHEMICAL PHYSICS LETTERS, 1983, 101 (03) : 317 - 319
  • [16] Terahertz Imaging With a Time-Reversed Finite Difference Time-Domain Method
    Bardak, Cemile
    Zhu, Yanhan
    Bernussi, Ayrton A.
    Saed, Mohammad
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2014, 4 (02) : 240 - 246
  • [17] Microwave Breast Imaging: Time-Domain Experiments on Tissue Phantoms
    Porter, Emily
    Santorelli, Adam
    Coates, Mark
    Popovic, Milica
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 695 - 698
  • [18] Time-Domain Holography
    Fernandez-Ruiz, M. R.
    Li, M.
    Azana, J.
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 658 - 659
  • [19] Hyperspectral Time-Domain Terahertz Nano Imaging
    Aghamiri, N.
    Huth, F.
    Huber, A.
    Hillenbrand, R.
    Abate, Y.
    2018 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2018, : 371 - 371
  • [20] Terahertz time-domain spectroscopy for explosive imaging
    Zhang, Zhengwei
    Zhang, Yan
    Zhao, Guozhong
    Zhang, Cunlin
    OPTIK, 2007, 118 (07): : 325 - 329