Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses

被引:11
作者
Sha, Zhendong [1 ]
Teng, Yun [2 ]
Poh, Leong Hien [3 ]
Wang, Tiejun [1 ]
Gao, Huajian [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp Engn, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] City Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China
[3] Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2,E1A-07-03, Singapore 117576, Singapore
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
metallic glass; shear band; structural design; post-processing; ductility; MECHANICAL-PROPERTIES; TENSILE DUCTILITY; PLASTIC-DEFORMATION; ENHANCED PLASTICITY; ELASTIC PROPERTIES; FORMING ABILITY; FATIGUE DAMAGE; BULK; BEHAVIOR; REJUVENATION;
D O I
10.1115/1.4056010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Aside from ultrahigh strength and elasticity, metallic glasses (MGs) possess a number of favorable properties. However, their lack of dislocation based plastic deformation mechanisms in crystalline metals and the resulting loss of ductility have restricted the engineering applications of MGs over the last 60 years. This review aims to provide an overview of deformation and failure mechanisms of MGs via formation and propagation of shear bands (SBs), with an emphasis on the control of SBs to promote strength-ductility synergy. With this goal in mind, we highlight some of the emerging strategies to improve the ductility of MGs. Topics covered include postprocessing techniques such as precompression, heterogeneity tuning, and rejuvenation, with a primary focus on recent progresses in structural design based methods including nanoglasses, notched MGs, and MG nanolattices, as future innovations toward strength-ductility synergy beyond the current benchmark ranges.
引用
收藏
页数:15
相关论文
共 171 条
[1]   A transition from localized shear banding to homogeneous superplastic flow in nanoglass [J].
Adibi, Sara ;
Sha, Zhen-Dong ;
Branicio, Paulo S. ;
Joshi, Shailendra P. ;
Liu, Zi-Shun ;
Zhang, Yong-Wei .
APPLIED PHYSICS LETTERS, 2013, 103 (21)
[2]   Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations [J].
Albe, Karsten ;
Ritter, Yvonne ;
Sopu, Daniel .
MECHANICS OF MATERIALS, 2013, 67 :94-103
[3]   Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J].
Alderson, A. ;
Alderson, K. L. ;
Attard, D. ;
Evans, K. E. ;
Gatt, R. ;
Grima, J. N. ;
Miller, W. ;
Ravirala, N. ;
Smith, C. W. ;
Zied, K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1042-1048
[4]  
[Anonymous], 2012, SHEAR BANDING BULK M
[5]   PLASTIC-DEFORMATION IN METALLIC GLASSES [J].
ARGON, AS .
ACTA METALLURGICA, 1979, 27 (01) :47-58
[6]   Metallic glasses as structural materials [J].
Ashby, MF ;
Greer, AL .
SCRIPTA MATERIALIA, 2006, 54 (03) :321-326
[7]   Fatigue damage in bulk metallic glass I: Simulation [J].
Cameron, KK ;
Dauskardt, RH .
SCRIPTA MATERIALIA, 2006, 54 (03) :349-353
[8]   New class of plastic bulk metallic glass [J].
Chen, L. Y. ;
Fu, Z. D. ;
Zhang, G. Q. ;
Hao, X. P. ;
Jiang, Q. K. ;
Wang, X. D. ;
Cao, Q. P. ;
Franz, H. ;
Liu, Y. G. ;
Xie, H. S. ;
Zhang, S. L. ;
Wang, B. Y. ;
Zeng, Y. W. ;
Jiang, J. Z. .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[9]   Grain Size and Heterophase Effects on Mechanical Properties of Mg-Cu Nanoglasses [J].
Chen, Yu ;
Ding, Jun ;
Sha, Zhen-Dong .
FRONTIERS IN MATERIALS, 2022, 9
[10]   Atomic-level structure and structure-property relationship in metallic glasses [J].
Cheng, Y. Q. ;
Ma, E. .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (04) :379-473