Partitions of the set of nonnegative integers with the same representation functions

被引:27
作者
Kiss, Sandor Z. [1 ]
Sandor, Csaba [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, H-1529 Budapest, Hungary
关键词
Additive number theory; Representation functions; Partitions of the set of natural numbers; NATURAL-NUMBERS;
D O I
10.1016/j.disc.2017.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set of nonnegative integers S let R-s(n) denote the number of unordered representations of the integer n as the sum of two different terms from S. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Chen and Lev. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1154 / 1161
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 2016, CHINESE J CONT MATH, V37, P39
[2]   On additive properties of two special sequences [J].
Chen, YG ;
Wang, B .
ACTA ARITHMETICA, 2003, 110 (03) :299-303
[3]  
Chen YG., 2016, Integers, V16, pA36
[4]   Partitions of natural numbers with the same representation functions [J].
Chen, Yong-Gao ;
Tang, Min .
JOURNAL OF NUMBER THEORY, 2009, 129 (11) :2689-2695
[5]   On the values of representation functions [J].
Chen YongGao .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) :1317-1331
[6]   Additive properties of certain sets [J].
Dombi, G .
ACTA ARITHMETICA, 2002, 103 (02) :137-146
[7]  
Lev VF, 2004, ELECTRON J COMB, V11
[8]   On the nonvanishing of representation functions of some special sequences [J].
Qu, Zhenhua .
DISCRETE MATHEMATICS, 2015, 338 (04) :571-575
[9]  
Sndor C., 2004, Integers, V4, pA18
[10]  
Tang M., 2012, INTEGERS, V12, pA53