共 50 条
Three-dimensional multilevel porous thin graphite nanosuperstructures for Ni(OH)2-based energy storage devices
被引:36
作者:
Ning, Jing
[1
,3
]
Xu, Xiaobin
[1
]
Liu, Chao
[1
]
Fan, D. L.
[1
,2
]
机构:
[1] Univ Texas Austin, Mat Sci & Engn Program, Texas Mat Inst, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[3] Xidian Univ, Sch Microelect, Xian 710071, Shaanxi, Peoples R China
基金:
美国国家科学基金会;
关键词:
ALKALINE RECHARGEABLE BATTERIES;
ULTRATHIN-GRAPHITE;
CARBON NANOTUBES;
NICKEL-HYDROXIDE;
POSITIVE-ELECTRODE;
GRAPHENE;
SUPERCAPACITORS;
FOAM;
FILM;
PERFORMANCE;
D O I:
10.1039/c4ta02617a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We report an innovative mechanism for the synthesis of 3-D multilevel porous graphite superstructures using strategically engineered Cu-Ni catalysts. The 3-D thin-graphite nanostructures with two levels of porosity were synthesized by using porous nickel-copper (Ni-Cu) catalysts-engineered from Ni foams via an electrodeposition/etching process. The as-grown graphite is 3-D, multilevel porous, freestanding, and flexible after selective etching of the catalysts. The graphite coated with thin nickel hydroxide nanoplates [Ni(OH)(2)] was applied as electrodes for alkaline batteries. The electrodes are binder-free and offer a remarkable discharge capacity of similar to 480 mA h g(-1) at a rate of 1.5 A g(-1). Compared to previous reports, they also exhibit excellent cyclability with 97.5% capacitance retention after 4000 cycles. The high performance of the electrodes of porous graphite/Ni(OH)(2) could be attributed to the large specific surface area, excellent crystalline quality, controlled Ni(OH)(2) nanocrystalline assemblies, and high electric conductivity. Overall, the reported mechanism for the synthesis of 3-D porous graphite is the first of its kind, which may potentially spur a new paradigm for manufacturing 3-D porous graphene/graphite materials for an array of energy storage applications.
引用
收藏
页码:15768 / 15773
页数:6
相关论文
共 50 条