USING GENETIC ALGORITHMS FOR MOBILE ROBOT PATH PLANNING

被引:0
作者
Dvorak, Jiri [1 ]
Krek, Petr [1 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Inst Automat & Comp Sci, Brno 61669, Czech Republic
来源
MENDEL 2008 | 2008年
关键词
mobile robot; path planning; genetic algorithms;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we deal with mobile robot path planning in two-dimensional continuous space in which known fined. The aim of the path planning is finding a path from a start to a goal position static polygonal obstacles are de without collisions with known obstacles minimizing an evaluation function. We investigate the possibilities of using genetic algorithms for solving this problem and describe various problem-specific genetic operators and fitness functions. We study also the ability of the proposed algorithm to adapt a previous solution to changes of start and/or goal positions and changes in the environment. Results of computational experiments are presented.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 9 条
  • [1] Burchardt H, 2006, IEEE C EVOL COMPUTAT, P1816
  • [2] Gemeinder M., 2003, Appl. Soft Comput, V3, P149, DOI [10.1016/S1568-4946(03)00010-3, DOI 10.1016/S1568-4946(03)00010-3]
  • [3] HOMAIFAR A, 2001, INTELLIGENT CONTROL
  • [4] Hu YR, 2004, IEEE INT CONF ROBOT, P4350
  • [5] LaValle S. M., 2006, PLANNING ALGORITHMS
  • [6] Meyer J-A., 2003, Cognitive Systems Research, V4, P283, DOI 10.1016/S1389-0417(03)00007-X
  • [7] Path planning in construction sites: performance evaluation of the Dijkstra, A*, and GA search algorithms
    Soltani, AR
    Tawfik, H
    Goulermas, JY
    Fernando, T
    [J]. ADVANCED ENGINEERING INFORMATICS, 2002, 16 (04) : 291 - 303
  • [8] XIAO J, 1997, IEEE T EVOLUTIONARY, V1, P18
  • [9] Coevolving and cooperating path planner for multiple unmanned air vehicles
    Zheng, CW
    Ding, MY
    Zhou, CP
    Li, L
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (08) : 887 - 896