Maximal regularity for Kolmogorov operators in L2 spaces with respect to invariant measures

被引:27
作者
Farkas, B.
Lunardi, A.
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2006年 / 86卷 / 04期
关键词
degenerate Ornstein-Uhlenbeck operator; hypoellipticity; invariant measure; maximal regularity;
D O I
10.1016/j.matpur.2006.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoelliptic Omstein-Uhlenbeck) operators in L-2 spaces with respect to invariant measures. We use an interpolation method together with optimal L-2 estimates for the space derivatives of T(t)f near t = 0, where T(t) is the Omstein-Uhlenbeck semigroup and f is any function in L2. (c) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1998, GAUSSIAN MEASURES
[2]  
[Anonymous], 2002, LONDON MATH SOC LECT
[3]   Generalized Ornstein-Uhlenbeck semigroups: Littlewood-Paley-Stein inequalities and the P. A. Meyer equivalence of norms [J].
Chojnowska-Michalik, A ;
Goldys, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 182 (02) :243-279
[4]  
Da Prato G., 1996, Ergodicity for infinite dimensional systems
[5]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204
[6]   Some remarks on the Smoluchowski-Kramers approximation [J].
Freidlin, M .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) :617-634
[7]  
Kato T., 1961, J. Math. Soc. Japan, V13, P246, DOI 10.2969/jmsj/01330246
[8]  
Khasminskii R. Z., 1980, STOCHASTIC STABILITY
[9]  
Lanconelli E., 1994, Rend. Sem. Mat. Univ. Politec. Torino, V52, P29
[10]  
Lunardi A, 1999, PROG NONLIN, V35, P517