On the optimal choice of coefficients in a truncated wild sum and approximate solutions for the Kac equation

被引:5
作者
Carlen, EA [1 ]
Salvarani, F
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[3] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
基金
美国国家科学基金会;
关键词
Kac's model; Wild's sum; time relaxed schemes;
D O I
10.1023/A:1019943813176
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an approximate solution of the Boltzmann problem for Kac's caricature of a Maxwellian gas by using a truncated and modified expansion of Wild type. We choose the coefficients in the Wild sum approximation using a criterion based on exactly reproducing the behavior of the leading modes.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 14 条
[2]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1296
[3]  
Carlen EA, 2000, COMMUN PUR APPL MATH, V53, P370, DOI 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO
[4]  
2-0
[5]  
CARLEN EA, 2001, SPECTRAL GAP KACS MA
[6]   ABOUT THE REGULARIZING PROPERTIES OF THE NON-CUT-OFF KAC EQUATION [J].
DESVILLETTES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :417-440
[7]   Relaxation schemes for nonlinear kinetic equations [J].
Gabetta, E ;
Pareschi, L ;
Toscani, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2168-2194
[8]  
INKENBERRY E, 1956, RAT MECH ANAL, V5, P1
[9]  
Kac M., 1959, PROBABILITY RELATED
[10]   FORMATION OF MAXWELLIAN TAILS [J].
KROOK, M ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1976, 36 (19) :1107-1109