Oblique boundary value problems for augmented Hessian equations II

被引:34
作者
Jiang, Feida [1 ]
Trudinger, Neil S. [2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Oblique boundary value problem; Augmented Hessian equations; a priori;
D O I
10.1016/j.na.2016.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we continue our investigations into the global theory of oblique boundary value problems for augmented Hessian equations. We construct a global barrier function in terms of an admissible function in a uniform way when the matrix function in the augmented Hessian is only assumed regular. This enables us to derive global second derivative estimates in terms of boundary estimates which are then obtained by strengthening the concavity or monotonicity conditions in our previous work on the strictly regular case. Finally we give some applications to existence theorems which embrace standard Hessian equations as special cases. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 173
页数:26
相关论文
共 22 条
[2]  
Gerhardt C, 1996, J DIFFER GEOM, V43, P612
[3]  
GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order
[4]  
Jiang F., 2015, PREPRINT
[5]  
Jiang F., 2016, CANAD J MAT IN PRESS
[6]  
Jiang F. J., 2016, PREPRINT
[7]   On the Dirichlet problem for a class of augmented Hessian equations [J].
Jiang, Feida ;
Trudinger, Neil S. ;
Yang, Xiao-Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) :1548-1576
[8]   On Pogorelov estimates in optimal transportation and geometric optics [J].
Jiang, Feida ;
Trudinger, Neil S. .
BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (03) :407-431
[9]   On the Dirichlet problem for Monge-Ampere type equations [J].
Jiang, Feida ;
Trudinger, Neil S. ;
Yang, Xiao-Ping .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) :1223-1236
[10]   NONLINEAR OBLIQUE BOUNDARY-VALUE-PROBLEMS FOR NONLINEAR ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM ;
TRUDINGER, NS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 295 (02) :509-546