Finite-Size Scaling at First-Order Quantum Transitions

被引:51
|
作者
Campostrini, Massimo [1 ,2 ]
Nespolo, Jacopo [1 ,2 ]
Pelissetto, Andrea [3 ,4 ]
Vicari, Ettore [1 ,2 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis Sapienza, I-00185 Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
关键词
RENORMALIZATION-GROUP THEORY; PHASE-TRANSITIONS; ISING-MODEL; SIMULATION;
D O I
10.1103/PhysRevLett.113.070402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study finite-size effects at first-order quantum transitions (FOQTs). We show that the low-energy properties show a finite-size scaling (FSS) behavior, the relevant scaling variable being the ratio of the energy associated with the perturbation driving the transition and the finite-size energy gap at the FOQT point. The size dependence of the scaling variable is therefore essentially determined by the size dependence of the gap at the transition, which in turn depends on the boundary conditions. Our results have broad validity and, in particular, apply to any FOQT characterized by the degeneracy and crossing of the two lowest-energy states in the infinite-volume limit. In this case, a phenomenological two-level theory provides exact expressions for the scaling functions. Numerical results for the quantum Ising chain in transverse and parallel magnetic fields support the FSS Ansatzes.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] CORRECTIONS TO FINITE-SIZE SCALING FOR QUANTUM CHAINS
    GEHLEN, GV
    HOEGER, C
    RITTENBERG, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L469 - L472
  • [32] ON THE FINITE-SIZE SCALING IN QUANTUM CRITICAL PHENOMENA
    TONCHEV, NS
    PHYSICA A, 1991, 171 (02): : 374 - 383
  • [33] Finite-size scaling for discontinuous nonequilibrium phase transitions
    de Oliveira, Marcelo M.
    da Luz, M. G. E.
    Fiore, Carlos E.
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [34] Vortices and finite-size scaling of superfluid phase transitions
    Williams, G.A.
    Physica B: Condensed Matter, 1990, 165-66 (01) : 769 - 770
  • [35] Finite-size scaling theory for explosive percolation transitions
    Cho, Y. S.
    Kim, S. -W.
    Noh, J. D.
    Kahng, B.
    Kim, D.
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [36] Finite-size scaling and universality at nonequilibrium phase transitions
    Brankov, JG
    Bunzarova, NZ
    PHYSICS OF PARTICLES AND NUCLEI, 2005, 36 : S88 - S92
  • [37] TEST OF FINITE-SIZE SCALING IN 1ST ORDER PHASE-TRANSITIONS
    CABRERA, GG
    JULLIEN, R
    BREZIN, E
    ZINNJUSTIN, J
    JOURNAL DE PHYSIQUE, 1986, 47 (08): : 1305 - 1313
  • [38] 1ST-ORDER TRANSITIONS IN SPHERICAL-MODELS - FINITE-SIZE SCALING
    FISHER, ME
    PRIVMAN, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (04) : 527 - 548
  • [39] Dynamic scaling for first-order phase transitions
    Özoguz, BE
    Gündüç, Y
    Aydin, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (03): : 553 - 559
  • [40] First-order quantum phase transitions
    Continentino, M. A.
    Ferreira, A. S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 828 - 834