Equivalent representation form in the sense of Lyapunov, of nonlinear forced, damped second-order differential equations

被引:13
作者
Elias-Zuniga, Alex [1 ]
Manuel Palacios-Pineda, Luis [2 ]
Martinez-Romero, Oscar [1 ]
Olvera-Trejo, Daniel [1 ]
机构
[1] Escuela Ingn & Ciencias Tecnol Monterrey, Ave Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Pachuca, Div Estudios Posgrad & Invest, Carr Mexico Pachuca Km 87-5, Pachuca 42080, Hgo, Mexico
关键词
Forced nonlinear oscillators; Equivalent restoring forces; Power-form elastic term oscillators; Lyapunov characteristic exponents; Chaos; MEAN-SQUARE METHOD; OSCILLATORS; CUBICATION; VIBRATIONS; PENDULUM; SYSTEMS;
D O I
10.1007/s11071-018-4186-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on finding in the sense of Lyapunov, the equivalent forced, damped cubic-quintic Duffing equation of nonlinear forced damped, second-order ordinary differential equations that could contain rational or irrational restoring elastic terms. The accuracy obtained from the equivalent expressions of dynamical systems such as the generalized pendulum equation, the power-form elastic term oscillator, oscillatory systems with irrational elastic restoring forces that modeled the motion of a mass attached to two stretched elastic springs, and the motion of the mechanism of dipteran flight motor, is numerically evaluated by computing their corresponding Lyapunov characteristic exponents, the amplitude-frequency, the amplitude-time, phase portraits, Poincare's maps, and their Kaplan-Yorke dimension plots.
引用
收藏
页码:2143 / 2158
页数:16
相关论文
共 24 条
[1]   An accurate closed-form approximate solution for the quintic Duffing oscillator equation [J].
Belendez, A. ;
Bernabeu, G. ;
Frances, J. ;
Mendez, D. I. ;
Marini, S. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :637-641
[2]   An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method [J].
Belendez, A. ;
Mendez, D. I. ;
Fernandez, E. ;
Marini, S. ;
Pascual, I. .
PHYSICS LETTERS A, 2009, 373 (32) :2805-2809
[3]   Cubication of conservative nonlinear oscillators [J].
Belendez, Augusto ;
Alvarez, Mariela L. ;
Fernandez, Elena ;
Pascual, Inmaculada .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (05) :973-981
[4]   Extraordinary oscillations of an ordinary forced pendulum [J].
Butikov, Eugene I. .
EUROPEAN JOURNAL OF PHYSICS, 2008, 29 (02) :215-233
[5]   An equivalent nonlinearization method for strongly nonlinear oscillations [J].
Cai, JP ;
Wu, XF ;
Li, YP .
MECHANICS RESEARCH COMMUNICATIONS, 2005, 32 (05) :553-560
[6]  
Cao Q., 2013, Int J Dyn Control, V1, P1, DOI [DOI 10.1007/S40435-013-0001-5, 10.1007/s40435-013-0001-5]
[7]   Quintication" method to obtain approximate analytical solutions of non-linear oscillators" [J].
Elías-Zúñiga, Alex .
Applied Mathematics and Computation, 2014, 243 :849-855
[8]   Approximate Solution for the Duffing-Harmonic Oscillator by the Enhanced Cubication Method [J].
Elias-Zuniga, Alex ;
Martinez-Romero, Oscar ;
Cordoba-Diaz, Renek. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[9]   A computer controlled pendulum with position readout [J].
Hauptfleisch, H. ;
Gasenzer, T. ;
Meier, K. ;
Nachtmann, O. ;
Schemmel, J. .
AMERICAN JOURNAL OF PHYSICS, 2010, 78 (06) :555-561
[10]   Mechanical systems, equivalent in Lyapunov's sense to systems not containing non-conservative positional forces [J].
Koshlyakov, V. N. ;
Makarov, V. L. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2007, 71 (01) :10-19