A roller bearing fault diagnosis method based on the improved ITD and RRVPMCD

被引:36
作者
Yang, Yu [1 ]
Pan, Haiyang
Ma, Li
Cheng, Junsheng
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Improved ITD; RRVPMCD; Feature selection; Roller bearing; Fault diagnosis; EMPIRICAL MODE DECOMPOSITION; PARAMETER-ESTIMATION; HILBERT SPECTRUM; TRANSFORM; SELECTION;
D O I
10.1016/j.measurement.2014.05.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Targeting that the measured vibration signal of roller bearing contains the characteristics of non-stationary and nonlinear, and the extraction features may contain smaller correlation and redundancy characteristics in the roller bearing fault diagnosis, the vibration signal processing method based upon improved ITD (intrinsic time-scale decomposition) and feature selection method based on Wrapper mode are put forward. In addition, in the design of the classifier, targeting the limitation of existing pattern recognition method, a new pattern recognition method-variable predictive model based class discriminate (VPMCD) is introduced into roller bearing fault identification. However, the parameters are fitted by using least squares in VPMCD method, while least squares regression is sensitive to "abnormal value". Therefore, a robust regression-variable predictive mode-based class discriminate (RRVPMCD) method is proposed in this paper, robust regression is adopted to estimate parameters and the effect of "abnormal value" in the estimation of parameters would be reduced by giving each feature a weight. Firstly, improved ITD method and feature selection method based on Wrapper mode are combined to extract the fault features of roller bearing vibration signals, and feature vector matrixes are established, then a predictive model is built through the method of RRVPMCD, finally, the established predictive model is used for pattern recognition. Experimental results show that the model based on the improved ITD, the Wrapper feature selection and RRVPMCD method can effectively identify work status and fault type of roller bearing. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2003, IEEE EURASIP WORKSH
[2]  
Breiman L, 1996, ANN STAT, V24, P2350
[3]  
[程军圣 CHENG Jun-sheng], 2009, [振动与冲击, Journal of Vibration and Shock], V28, P13
[4]   Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform [J].
Cheng, Junsheng ;
Yu, Dejie ;
Yang, Yu .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (03) :1197-1211
[5]   Fault diagnosis of power transformer based on support vector machine with genetic algorithm [J].
Fei, Sheng-wei ;
Zhang, Xiao-bin .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (08) :11352-11357
[6]   Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals [J].
Frei, Mark G. ;
Osorio, Ivan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2078) :321-342
[7]   A confidence limit for the empirical mode decomposition and Hilbert spectral analysis [J].
Huang, NE ;
Wu, MLC ;
Long, SR ;
Shen, SSP ;
Qu, WD ;
Gloersen, P ;
Fan, KL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2037) :2317-2345
[8]   A new view of nonlinear water waves: The Hilbert spectrum [J].
Huang, NE ;
Shen, Z ;
Long, SR .
ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 :417-457
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   Application of the EEMD method to rotor fault diagnosis of rotating machinery [J].
Lei, Yaguo ;
He, Zhengjia ;
Zi, Yanyang .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) :1327-1338