Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells

被引:231
作者
Janzer, Andreas [1 ]
German, Natalie J. [2 ]
Gonzalez-Herrera, Karina N. [2 ]
Asara, John M. [3 ]
Haigis, Marcia C. [2 ]
Struhl, Kevin [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Beth Israel Deaconess Med Ctr, Dept Med, Div Signal Transduct, Boston, MA 02215 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
glycolysis; metabolism; cancer metabolism; metabolic profiling; BREAST-CANCER; MITOCHONDRIAL DYSFUNCTION; INFLAMMATORY RESPONSE; RESPIRATORY-CHAIN; DIABETIC-PATIENTS; COMPLEX I; METABOLISM; GROWTH; CHEMOTHERAPY; DECREASES;
D O I
10.1073/pnas.1409844111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.
引用
收藏
页码:10574 / 10579
页数:6
相关论文
共 40 条
[1]   Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro [J].
Alimova, Irina N. ;
Liu, Bolin ;
Fan, Zeying ;
Edgerton, Susan M. ;
Dillon, Thomas ;
Lind, Stuart E. ;
Thor, Ann D. .
CELL CYCLE, 2009, 8 (06) :909-915
[2]   Phenformin as prophylaxis and therapy in breast cancer xenografts [J].
Appleyard, M. V. C. L. ;
Murray, K. E. ;
Coates, P. J. ;
Wullschleger, S. ;
Bray, S. E. ;
Kernohan, N. M. ;
Fleming, S. ;
Alessi, D. R. ;
Thompson, A. M. .
BRITISH JOURNAL OF CANCER, 2012, 106 (06) :1117-1122
[3]   Rotenone-Mediated Changes in Intracellular Coenzyme A Thioester Levels: Implications for Mitochondrial Dysfunction [J].
Basu, Sankha S. ;
Blair, Ian A. .
CHEMICAL RESEARCH IN TOXICOLOGY, 2011, 24 (10) :1630-1632
[4]   Metformin Retards Aging in C. elegans by Altering Microbial Folate and Methionine Metabolism [J].
Cabreiro, Filipe ;
Au, Catherine ;
Leung, Kit-Yi ;
Vergara-Irigaray, Nuria ;
Cocheme, Helena M. ;
Noori, Tahereh ;
Weinkove, David ;
Schuster, Eugene ;
Greene, Nicholas D. E. ;
Gems, David .
CELL, 2013, 153 (01) :228-239
[5]   Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs [J].
Corominas-Faja, Bruna ;
Quirantes-Pine, Rosa ;
Oliveras-Ferraros, Cristina ;
Vazquez-Martin, Alejandro ;
Cufi, Silvia ;
Martin-Castillo, Begona ;
Micol, Vicente ;
Joven, Jorge ;
Segura-Carretero, Antonio ;
Menendez, Javier A. .
AGING-US, 2012, 4 (07) :480-498
[6]   Metformin in cancer: translational challenges [J].
Dowling, Ryan J. O. ;
Niraula, Saroj ;
Stambolic, Vuk ;
Goodwin, Pamela J. .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2012, 48 (03) :R31-R43
[7]   Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro [J].
Dykens, James A. ;
Jamieson, Joseph ;
Marroquin, Lisa ;
Nadanaciva, Sashi ;
Billis, Puja A. ;
Will, Yvonne .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (02) :203-210
[8]   Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I [J].
El-Mir, MY ;
Nogueira, V ;
Fontaine, E ;
Avéret, N ;
Rigoulet, M ;
Leverve, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :223-228
[9]   Metformin and reduced risk of cancer in diabetic patients [J].
Evans, JMM ;
Donnelly, LA ;
Emslie-Smith, AM ;
Alessi, DR ;
Morris, AD .
BMJ-BRITISH MEDICAL JOURNAL, 2005, 330 (7503) :1304-1305
[10]   Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism [J].
Fendt, Sarah-Maria ;
Bell, Eric L. ;
Keibler, Mark A. ;
Davidson, Shawn M. ;
Wirth, Gregory J. ;
Fiske, Brian ;
Mayers, Jared R. ;
Schwab, Matthias ;
Bellinger, Gary ;
Csibi, Alfredo ;
Patnaik, Akash ;
Blouin, Marie Jose ;
Cantley, Lewis C. ;
Guarente, Leonard ;
Blenis, John ;
Pollak, Michael N. ;
Olumi, Aria F. ;
Vander Heiden, Matthew G. ;
Stephanopoulos, Gregory .
CANCER RESEARCH, 2013, 73 (14) :4429-4438