On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator

被引:9
|
作者
Komech, Alexander I.
Komech, Andrew A.
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Texas A&M Univ, Dept Math, College Stn, TX USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.crma.2006.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The long-time asymptotics are analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a point. Our main result is that each finite energy solution converges as t -> +/-infinity to the set of 'nonlinear eigenfunctions' psi(x)e(-iwt).
引用
收藏
页码:111 / 114
页数:4
相关论文
共 50 条
  • [41] Time-Fractional Klein-Gordon Equation with Solitary/Shock Waves Solutions
    Saifullah, Sayed
    Ali, Amir
    Irfan, Muhammad
    Shah, Kamal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [42] THE KLEIN-GORDON OSCILLATOR
    BRUCE, S
    MINNING, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1993, 106 (05): : 711 - 713
  • [43] Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field
    Alexander Komech
    Andrew Komech
    Archive for Rational Mechanics and Analysis, 2007, 185 : 105 - 142
  • [44] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931
  • [45] From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrodinger equations
    Masmoudi, N
    Nakanishi, K
    MATHEMATISCHE ANNALEN, 2002, 324 (02) : 359 - 389
  • [46] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Jian Zhang
    Zai-hui Gan
    Bo-ling Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 427 - 442
  • [47] Stability of standing waves for a nonlinear Klein-Gordon equation with delta potentials
    Csobo, Elek
    Genoud, Francois
    Ohta, Masahito
    Royer, Julien
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) : 353 - 388
  • [48] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Zhang, Jian
    Gan, Zai-hui
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 427 - 442
  • [49] Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with of Maxwell's equations
    Cassani, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (7-8) : 733 - 747
  • [50] Renormalized waves and thermalization of the Klein-Gordon equation
    Shirokoff, D.
    PHYSICAL REVIEW E, 2011, 83 (04):