A Hybrid CNN-LSTM Model for IIoT Edge Privacy-Aware Intrusion Detection

被引:9
|
作者
de Elias, Erik Miguel [1 ]
Carriel, Vinicius Sanches [1 ]
de Oliveira, Guilherme Werneck [1 ]
dos Santos, Aldri Luiz [2 ]
Nogueira, Michele [2 ]
Hirata Junior, Roberto [1 ]
Batista, Daniel Macedo [1 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
[2] Fed Univ Minas Gerais UFMG, Dept Comp Sci, Belo Horizonte, MG, Brazil
来源
2022 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM) | 2022年
基金
巴西圣保罗研究基金会;
关键词
IoT; IIoT; Neural Networks; Deep Learning; Machine Learning; Intrusion Detection;
D O I
10.1109/LATINCOM56090.2022.10000468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Security is a critical issue in the context of IoT and, more recently, of Industrial IoT (IIoT) environments. To mitigate security threats, Intrusion Detection Systems have been proposed. Still, most of them can achieve high accuracy only by having access to the application layer of the flows, which is problematic in terms of privacy. This paper presents a neural network model based on a hybrid CNN-LSTM architecture to detect several attacks in the network traffic at the Edge of IIoT using only features from the transport and network layers. Besides improving privacy, the proposal achieves 97.85% average accuracy when classifying the traffic as benign or malicious and 97.14% average accuracy when classifying 15 specific attacks in a dataset containing IIoT traffic. Moreover, all the code produced is available as free software, facilitating new studies and the reproduction of the experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A hybrid CNN-LSTM machine learning model for rock mechanical parameters evaluation
    Hu, Yating
    Zhang, Qiong
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 225
  • [42] CNN-LSTM model for solar radiation prediction: performance analysis
    Eslik, Ardan Hueseyin
    Sen, Ozan
    Serttas, Fatih
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (04): : 2155 - 2162
  • [43] SkipGateNet: A Lightweight CNN-LSTM Hybrid Model With Learnable Skip Connections for Efficient Botnet Attack Detection in IoT
    Alshehri, Mohammed S.
    Ahmad, Jawad
    Almakdi, Sultan
    Qathrady, Mimonah Al
    Ghadi, Yazeed Yasin
    Buchanan, William J.
    IEEE ACCESS, 2024, 12 : 35521 - 35538
  • [44] A Hypertuned Lightweight and Scalable LSTM Model for Hybrid Network Intrusion Detection
    Bibi, Aysha
    Sampedro, Gabriel Avelino
    Almadhor, Ahmad
    Javed, Abdul Rehman
    Kim, Tai-hoon
    TECHNOLOGIES, 2023, 11 (05)
  • [45] A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning
    Shoorkand, Hassan Dehghan
    Nourelfath, Mustapha
    Hajji, Adnene
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 241
  • [46] Hybrid CNN-LSTM Forecasting Model for Electric Vehicle Charging Demand in Smart Buildings
    Tsalikidis, Nikolaos
    Koukaras, Paraskevas
    Ioannidis, Dimosthenis
    Tzovaras, Dimitrios
    PROCEEDINGS 2024 IEEE 6TH GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE, IEEE GPECOM 2024, 2024, : 590 - 595
  • [47] A Hybrid CNN-LSTM Approach for Monthly Reservoir Inflow Forecasting
    S. Khorram
    N. Jehbez
    Water Resources Management, 2023, 37 : 4097 - 4121
  • [48] A CNN-LSTM Model for Tailings Dam Risk Prediction
    Yang, Jun
    Qu, Jingbin
    Mi, Qiang
    Li, Qing
    IEEE ACCESS, 2020, 8 (08): : 206491 - 206502
  • [49] A Hybrid CNN-LSTM Approach for Monthly Reservoir Inflow Forecasting
    Khorram, S.
    Jehbez, N.
    WATER RESOURCES MANAGEMENT, 2023, 37 (10) : 4097 - 4121
  • [50] Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting
    Alhussein, Musaed
    Aurangzeb, Khursheed
    Haider, Syed Irtaza
    IEEE ACCESS, 2020, 8 : 180544 - 180557