A stationary Poisson departure process from a minimally delayed infinite server queue with non-stationary Poisson arrivals

被引:2
作者
Barnes, JA
Meili, R
机构
关键词
Poisson process; non-stationary Poisson process; infinite server queue;
D O I
10.2307/3215101
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The points of a non-stationary Poisson process with periodic intensity are independently shifted forward in time in such a way that the transformed process is stationary Poisson. The mean shift is shown to be minimal. The approach used is to consider an M-t/G(t)/infinity queueing system where the arrival process is a non-stationary Poisson with periodic intensity function. A minimal service time distribution is constructed that yields a stationary Poisson departure process.
引用
收藏
页码:767 / 772
页数:6
相关论文
共 6 条
[1]   THE PHYSICS OF THE M(T)/G/IOTA QUEUE [J].
EICK, SG ;
MASSEY, WA ;
WHITT, W .
OPERATIONS RESEARCH, 1993, 41 (04) :731-742
[2]  
Foley R. D., 1982, Opsearch, V19, P40
[3]   STATIONARY POISSON DEPARTURE PROCESSES FROM NONSTATIONARY QUEUES [J].
FOLEY, RD .
JOURNAL OF APPLIED PROBABILITY, 1986, 23 (01) :256-260
[4]   SOME EFFECTS OF NONSTATIONARITY ON MULTISERVER MARKOVIAN QUEUING-SYSTEMS [J].
GREEN, L ;
KOLESAR, P ;
SVORONOS, A .
OPERATIONS RESEARCH, 1991, 39 (03) :502-511
[5]   AVERAGE DELAY IN QUEUES WITH NONSTATIONARY POISSON ARRIVALS [J].
ROSS, SM .
JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) :602-609
[6]  
Stoyan D., 1983, COMP METHODS QUEUES