CHALLENGES AND OPPORTUNITIES OF MULTIMODALITY AND DATA FUSION IN REMOTE SENSING

被引:0
作者
Dalla Mura, M. [1 ]
Prasad, S. [2 ]
Pacifici, F. [3 ]
Gamba, P. [4 ]
Chanussot, J. [1 ,5 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[2] Univ Houston, Houston, TX 77004 USA
[3] DigitalGlobe Inc, Westminster, CO USA
[4] Univ Pavia, I-27100 Pavia, Italy
[5] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
来源
2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2014年
关键词
Data fusion; remote sensing; pansharpening; classification; change detection; GRSS DATA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remote sensing is one of the most common ways to extract relevant information about the Earth through observations. Remote sensing acquisitions can be done by both active (SAR, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, diverse information of Earth's surface can be obtained. These devices provide information about the structure (optical, SAR), elevation (LiDAR) and material content (multi- and hyperspectral). Together they can provide information about land use (urban, climatic changes), natural disasters (floods, hurricanes, earthquakes), and potential exploitation (oil fields, minerals). In addition, images taken at different times can provide information about damages from floods, fires, seasonal changes etc. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests (organized by the IEEE Geoscience and Remote Sensing Society) which has been fostering the development of research and applications on this topic during the past decade.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
[41]   Decision fusion for the classification of urban remote sensing images [J].
Fauvel, Mathieu ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10) :2828-2838
[42]   Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review [J].
Sahbeni, Ghada ;
Ngabire, Maurice ;
Musyimi, Peter K. ;
Szekely, Balazs .
REMOTE SENSING, 2023, 15 (10)
[43]   Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward [J].
Pettorelli, Nathalie ;
Buehne, Henrike Schulte to ;
Tulloch, Ayesha ;
Dubois, Gregoire ;
Macinnis-Ng, Cate ;
Queiros, Ana M. ;
Keith, David A. ;
Wegmann, Martin ;
Schrodt, Franziska ;
Stellmes, Marion ;
Sonnenschein, Ruth ;
Geller, Gary N. ;
Roy, Shovonlal ;
Somers, Ben ;
Murray, Nicholas ;
Bland, Lucie ;
Geijzendorffer, Ilse ;
Kerr, Jeremy T. ;
Broszeit, Stefanie ;
Leitao, Pedro J. ;
Duncan, Clare ;
El Serafy, Ghada ;
He, Kate S. ;
Blanchard, Julia L. ;
Lucas, Richard ;
Mairota, Paola ;
Webb, Thomas J. ;
Nicholson, Emily .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2018, 4 (02) :71-93
[44]   Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges [J].
Giri, Chandra .
REMOTE SENSING, 2016, 8 (09)
[45]   Challenges and opportunities in remote sensing-based crop monitoring: A review [J].
Wu, Bingfang ;
Zhang, Miao ;
Zeng, Hongwei ;
Tian, Fuyou ;
Potgieter, Andries B. ;
Qin, Xingli ;
Yan, Nana ;
Chang, Sheng ;
Zhao, Yan ;
Dong, Qinghan ;
Boken, Vijendra ;
Plotnikov, Dmitry ;
Guo, Huadong ;
Wu, Fangming ;
Zhao, Hang ;
Deronde, Bart ;
Tits, Laurent ;
Loupian, Evgeny .
NATIONAL SCIENCE REVIEW, 2023, 10 (04)
[46]   Remote sensing technology in the study of lake carbon cycle: Opportunities and challenges [J].
Huang C. ;
Yao L. ;
Li J. ;
Zhou C. ;
Guo Y. ;
Li Y. .
National Remote Sensing Bulletin, 2022, 26 (01) :49-67
[47]   Open-World Recognition in Remote Sensing: Concepts, challenges, and opportunities [J].
Fang, Leyuan ;
Yang, Zhen ;
Ma, Tianlei ;
Yue, Jun ;
Xie, Weiying ;
Ghamisi, Pedram ;
Li, Jun .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2024, 12 (02) :8-31
[48]   Deep Fusion of Remote Sensing Data for Accurate Classification [J].
Chen, Yushi ;
Li, Chunyang ;
Ghamisi, Pedram ;
Jia, Xiuping ;
Gu, Yanfeng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) :1253-1257
[49]   A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities [J].
Han, Wei ;
Zhang, Xiaohan ;
Wang, Yi ;
Wang, Lizhe ;
Huang, Xiaohui ;
Li, Jun ;
Wang, Sheng ;
Chen, Weitao ;
Li, Xianju ;
Feng, Ruyi ;
Fan, Runyu ;
Zhang, Xinyu ;
Wang, Yuewei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 :87-113
[50]   Data fusion of HyMap hyperspectral with HRSC-A multispectral stereo and DTM data:: Remote sensing data validation and application in different disciplines [J].
Lehmann, F ;
Bucher, T ;
Hese, S ;
Hoffmann, A ;
Mayer, S ;
Oschütz, F ;
Zhang, Y .
1ST EARSEL WORKSHOP ON IMAGING SPECTROSCOPY, 1998, :105-+