CHALLENGES AND OPPORTUNITIES OF MULTIMODALITY AND DATA FUSION IN REMOTE SENSING

被引:0
作者
Dalla Mura, M. [1 ]
Prasad, S. [2 ]
Pacifici, F. [3 ]
Gamba, P. [4 ]
Chanussot, J. [1 ,5 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[2] Univ Houston, Houston, TX 77004 USA
[3] DigitalGlobe Inc, Westminster, CO USA
[4] Univ Pavia, I-27100 Pavia, Italy
[5] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
来源
2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2014年
关键词
Data fusion; remote sensing; pansharpening; classification; change detection; GRSS DATA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remote sensing is one of the most common ways to extract relevant information about the Earth through observations. Remote sensing acquisitions can be done by both active (SAR, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, diverse information of Earth's surface can be obtained. These devices provide information about the structure (optical, SAR), elevation (LiDAR) and material content (multi- and hyperspectral). Together they can provide information about land use (urban, climatic changes), natural disasters (floods, hurricanes, earthquakes), and potential exploitation (oil fields, minerals). In addition, images taken at different times can provide information about damages from floods, fires, seasonal changes etc. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests (organized by the IEEE Geoscience and Remote Sensing Society) which has been fostering the development of research and applications on this topic during the past decade.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
[31]   Remote sensing for China's sustainable development: opportunities and challenges [J].
Xu G. ;
Liu Q. ;
Chen L. ;
Liu L. .
Yaogan Xuebao/Journal of Remote Sensing, 2016, 20 (05) :679-688
[32]   Hyperspectral Remote Sensing of Forests: Technological advancements, Opportunities and Challenges [J].
Upadhyay, Vipin ;
Kumar, Amit .
EARTH SCIENCE INFORMATICS, 2018, 11 (04) :487-524
[33]   OPTIMAL TRANSPORT FOR DATA FUSION IN REMOTE SENSING [J].
Courty, Nicolas ;
Flamary, Remi ;
Tuia, Devis ;
Corpetti, Thomas .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :3571-3574
[34]   Crop classification based on multi-source remote sensing data fusion and LSTM algorithm [J].
Xie Y. ;
Zhang Y. ;
Xun L. ;
Chai X. .
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (15) :129-137
[35]   EVOR-STACK: A label-dependent evolutive stacking on remote sensing data fusion [J].
Garcia-Gutierrez, Jorge ;
Mateos-Garcia, Daniel ;
Riquelme-Santos, Jose C. .
NEUROCOMPUTING, 2012, 75 (01) :115-122
[36]   Data Fusion and Models Integration for Enhanced Semantic Segmentation in Remote Sensing [J].
Dong, Xiaorui ;
Li, Jiansheng ;
Chang, Qingfang ;
Miao, Shufeng ;
Wan, Hongxiang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 :7134-7151
[37]   Multiresolution Multimodal Sensor Fusion for Remote Sensing Data With Label Uncertainty [J].
Du, Xiaoxiao ;
Zare, Alina .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04) :2755-2769
[38]   Fusion of multisensor remote sensing data for urban land cover classification [J].
Greiwe, A ;
Bochow, M ;
Ehlers, M .
REMOTE SENSING FOR ENVIRONMENTAL MONITORING, GIS APPLICATIONS, AND GEOLOGY III, 2004, 5239 :306-313
[39]   Close-Range Remote Sensing of Forests: The State of the Art, Challenges, and Opportunities for Systems and Data Acquisitions [J].
Liang, Xinlian ;
Kukko, Antero ;
Balenovic, Ivan ;
Saarinen, Ninni ;
Junttila, Samuli ;
Kankare, Ville ;
Holopainen, Markus ;
Mokros, Martin ;
Surovy, Peter ;
Kaartinen, Harri ;
Jurjevic, Luka ;
Honkavaara, Eija ;
Nasi, Roope ;
Liu, Jingbin ;
Hollaus, Markus ;
Tian, Jiaojiao ;
Yu, Xiaowei ;
Pan, Jie ;
Cai, Shangshu ;
Virtanen, Juho-Pekka ;
Wang, Yunsheng ;
Hyyppa, Juha .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (03) :32-71
[40]   Survey on Remote Sensing Data Augmentation: Advances, Challenges, and Future Perspectives [J].
Oubara, Amel ;
Wu, Falin ;
Amamra, Abdenour ;
Yang, Gongliu .
ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 :95-104