A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics

被引:247
作者
Abe, S
机构
[1] College of Science and Technology, Nihon University, Funabashi
关键词
D O I
10.1016/S0375-9601(96)00832-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a connection between the generalized entropy and theory of quantum groups, recently pointed out by Tsallis [Phys. Lett. A 195 (1994) 329], can naturally be understood in the framework of q-calculus. We present a new entropy which has q <----> q(-1) invariance and discuss its basic properties.
引用
收藏
页码:326 / 330
页数:5
相关论文
共 32 条
[1]   FRACTAL RANDOM-WALKS FROM A VARIATIONAL FORMALISM FOR TSALLIS ENTROPIES [J].
ALEMANY, PA ;
ZANETTE, DH .
PHYSICAL REVIEW E, 1994, 49 (02) :R956-R958
[2]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[3]   A Q-ANALOG OF BARGMANN SPACE AND ITS SCALAR PRODUCT [J].
BRACKEN, AJ ;
MCANALLY, DS ;
ZHANG, RB ;
GOULD, MD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :1379-1391
[4]  
BRILLOUIN L, 1956, SCI INFORMATION THEO
[5]   GENERALIZED INFORMATION FUNCTIONS [J].
DAROCZY, Z .
INFORMATION AND CONTROL, 1970, 16 (01) :36-&
[6]   QUANTUM-MECHANICS ON A LATTICE AND Q-DEFORMATIONS [J].
DIMAKIS, A ;
MULLERHOISSEN, F .
PHYSICS LETTERS B, 1992, 295 (3-4) :242-248
[7]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[8]  
Hardy G.H., 1952, INEQUALITIES
[9]  
Jackson F. H., 1910, Quart. J. Appl. Math., V41, P193, DOI DOI 10.1017/S0080456800002751
[10]  
JACKSON FH, 1909, MESSENGER MATH, V38, P57