An Effective Supplementation of Insufficient Data by Generative Adversarial Networks

被引:1
作者
Abdulraheem, Abdulkabir [1 ]
Jung, Im Y. [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, 80 Daehakro Bukgu, Daegu 41566, South Korea
来源
2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT | 2022年
基金
新加坡国家研究基金会;
关键词
Data Augmentation; Generative Adversarial Networks; Automatic Information Retrieval; Machine learning;
D O I
10.1109/BDCAT56447.2022.00030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative Adversarial Networks (GANs) can be used for data augmentation in order to improve the outcome and performance of machine learning models for automatic information retrieval. We looked into the challenge faced with limited blurry and distorted digit images from expiry dates datasets, which is required to improve digit recognition tasks on medicine, consumables, cosmetic products and tube-type ointments. For our dataset, Wasserstein GAN with a gradient norm penalty (WGAN-GP) was effective for data augmentation among the state-of-the-art GANs by visible inspection and Frechet Inception Distance (FID) value comparison.
引用
收藏
页码:174 / 175
页数:2
相关论文
共 7 条
[1]  
[Anonymous], 2018, ADV NEURAL INF PROCE
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]  
Chollet F., 2017, Deep Learning with Python
[4]   THE FRECHET DISTANCE BETWEEN MULTIVARIATE NORMAL-DISTRIBUTIONS [J].
DOWSON, DC ;
LANDAU, BV .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :450-455
[5]  
Heusel M, 2017, ADV NEUR IN, V30
[6]  
Gulrajani I, 2017, ADV NEUR IN, V30
[7]   A survey on Image Data Augmentation for Deep Learning [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. .
JOURNAL OF BIG DATA, 2019, 6 (01)